【題目】一個樣本a,3,5,7的平均數(shù)是b,且a,b分別是數(shù)列{2n2}(n∈N*)的第2項和第4項,則這個樣本的方差是(
A.3
B.4
C.5
D.6

【答案】C
【解析】解:∵樣本a,3,5,7的平均數(shù)是b,且a,b分別是數(shù)列{2n2}(n∈N*)的第2項和第4項,

∴a=222=1,b=242=4,

∴S2= [(1﹣4)2+(3﹣4)2+(5﹣4)2+(7﹣4)2]=5,

故選:C.

【考點精析】本題主要考查了極差、方差與標準差的相關(guān)知識點,需要掌握標準差和方差越大,數(shù)據(jù)的離散程度越大;標準差和方程為0時,樣本各數(shù)據(jù)全相等,數(shù)據(jù)沒有離散性;方差與原始數(shù)據(jù)單位不同,解決實際問題時,多采用標準差才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在四面體ABCD中,二面角A﹣BC﹣D為60°,點P為直線BC上一動點,記直線PA與平面BCD所成的角為θ,則(
A.θ的最大值為60°
B.θ的最小值為60°
C.θ的最大值為30°
D.θ的最小值為30°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程是 (α為參數(shù)),以原點O為極點,x軸的正半軸為極軸,建立極坐標系,曲線C2的極坐標方程為ρ=1.
(Ⅰ)分別寫出C1的極坐標方程和C2的直角坐標方程;
(Ⅱ)若射線l的極坐標方程θ= (ρ≥0),且l分別交曲線C1、C2于A、B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知ω為正整數(shù),函數(shù)f(x)=sinωxcosωx+ 在區(qū)間 內(nèi)單調(diào)遞增,則函數(shù)f(x)(
A.最小值為 ,其圖象關(guān)于點 對稱
B.最大值為 ,其圖象關(guān)于直線 對稱
C.最小正周期為2π,其圖象關(guān)于點 對稱
D.最小正周期為π,其圖象關(guān)于直線 對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥底面ABC, ,AB⊥AC,D是棱BB1的中點.
(Ⅰ)證明:平面A1DC⊥平面ADC;
(Ⅱ)求平面A1DC與平面ABC所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項質(zhì)量指標值,由測量結(jié)果得如下頻數(shù)分布表:

質(zhì)量指標值分組

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

頻數(shù)

6

26

38

22

8


(1)作出這些數(shù)據(jù)的頻數(shù)分布直方圖;
(2)估計這種產(chǎn)品質(zhì)量指標值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中間值來代表這種產(chǎn)品質(zhì)量的指標值);
(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標值不低于95的產(chǎn)品至少要占全部產(chǎn)品的85%”的規(guī)定?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,若存在x∈N*使得f(x)≤2成立,則實數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將一張邊長為12cm的正方形紙片按如圖(1)所示陰影部分裁去四個全等的等腰三角形,將余下部分沿虛線折疊并拼成一個有底的正四棱錐模型,如圖(2)所示放置.如果正四棱錐的主視圖是等邊三角形,如圖(3)所示,則正四棱錐的體積是(
A. cm3
B. cm3
C. cm3
D. cm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動點C到點F(1,0)的距離比到直線x=﹣2的距離小1,動點C的軌跡為E.
(1)求曲線E的方程;
(2)若直線l:y=kx+m(km<0)與曲線E相交于A,B兩個不同點,且 ,證明:直線l經(jīng)過一個定點.

查看答案和解析>>

同步練習冊答案