已知公差不為零的等差數(shù)列的前3項和,且、成等比數(shù)列.
(1)求數(shù)列的通項公式及前n項的和;
(2)設(shè)的前n項和,證明:
(3)對(2)問中的,若對一切恒成立,求實數(shù)的最小值.

(1)(2)證明詳見解析.(3)

解析試題分析:(1)由已知可得可求得,然后根據(jù)公式求得.(2)首先求出的表達(dá)式,然后利用裂項法求出,最后根據(jù)的單調(diào)性求證不等式成立.(3)由可得然后利用函數(shù)的單調(diào)性求解即可.
試題解析:(1)       4分
(2),      6分,
易知,,故   9分
(3),得則易知
   13分
考點:1.等差數(shù)列的性質(zhì);2.數(shù)列的前n項和以及數(shù)列的單調(diào)性;3.函數(shù)單調(diào)性.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知首項為的等比數(shù)列{an}是遞減數(shù)列,其前n項和為Sn,且S1+a1,S2+a2,S3+a3成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若,數(shù)列{bn}的前n項和Tn,求滿足不等式的最大n值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列中,已知,時,.?dāng)?shù)列滿足:
(1)證明:為等差數(shù)列,并求的通項公式;
(2)記數(shù)列的前項和為,若不等式成立(為正整數(shù)).求出所有符合條件的有序?qū)崝?shù)對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足,且對任意非負(fù)整數(shù)均有:.
(1)求;
(2)求證:數(shù)列是等差數(shù)列,并求的通項;
(3)令,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項和為,且.
(1)求數(shù)列的通項公式;
(2)設(shè),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項和為,且,數(shù)列滿足,且點在直線上.
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等差數(shù)列,等比數(shù)列中,,,.
(1)求
(2)設(shè)為數(shù)列的前項和,,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}滿足:a1=20,a2=7,an+2﹣an=﹣2(n∈N*).
(Ⅰ)求a3,a4,并求數(shù)列{an}通項公式;
(Ⅱ)記數(shù)列{an}前2n項和為S2n,當(dāng)S2n取最大值時,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的前項和為,且的等差中項,等差數(shù)列滿足.
(1)求數(shù)列、的通項公式;
(2)設(shè),數(shù)列的前項和為,證明:.

查看答案和解析>>

同步練習(xí)冊答案