【題目】已知、為平面上的兩個(gè)定點(diǎn),且,該平面上的動(dòng)線段的端點(diǎn)、,滿足,,,則動(dòng)線段所形成圖形的面積為( )
A.36B.60C.72D.108
【答案】B
【解析】
先由題意,以為坐標(biāo)原點(diǎn),以所在直線為軸,以的垂線為軸,建立平面直角坐標(biāo)系,得到,,設(shè),根據(jù)向量數(shù)量積的運(yùn)算,得到動(dòng)點(diǎn)的軌跡,求出掃過(guò)的三角形的面積;再推出動(dòng)點(diǎn)軌跡,求出掃過(guò)的三角形的面積,進(jìn)而可求出結(jié)果.
根據(jù)題意,建立如圖所示的平面直角坐標(biāo)系,則,,
設(shè),所以,,
由得;又,所以,即,
所以,解得;
因此,動(dòng)點(diǎn)在直線且上,即,
則掃過(guò)的三角形的面積為:;
設(shè)點(diǎn),因?yàn)?/span>,所以,
所以,,
因此,動(dòng)點(diǎn)在直線且上,所以,
則掃過(guò)的三角形的面積為:;
所以動(dòng)線段所形成圖形的面積為.
故選:B
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】生活中萬(wàn)事萬(wàn)物都是有關(guān)聯(lián)的,所有直線中有關(guān)聯(lián)直線,所有點(diǎn)中也有相關(guān)點(diǎn),現(xiàn)在定義:平面內(nèi)如果兩點(diǎn)、都在函數(shù)的圖像上,而且滿足、兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,則稱點(diǎn)對(duì)(、)是函數(shù)的“相關(guān)對(duì)稱點(diǎn)對(duì)”(注明:點(diǎn)對(duì)(、)與(、)看成同一個(gè)“相關(guān)對(duì)稱點(diǎn)對(duì)”).已知函數(shù),則這個(gè)函數(shù)的“相關(guān)對(duì)稱點(diǎn)對(duì)”有( )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是圓柱的直徑,是圓柱的母線,,,點(diǎn)是圓柱底面圓周上的點(diǎn).
(1)求三棱錐體積的最大值;
(2)若,是線段上靠近點(diǎn)的三等分點(diǎn),點(diǎn)是線段上的動(dòng)點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,,,為的中點(diǎn),是線段上的一點(diǎn).
(1)若為的中點(diǎn),求證:平面平面;
(2)當(dāng)點(diǎn)在什么位置時(shí),平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線和直線,射線的一個(gè)法向量為,點(diǎn)為坐標(biāo)原點(diǎn),,,點(diǎn)、分別是直線、上的動(dòng)點(diǎn),直線和之間的距離為2,于點(diǎn),于點(diǎn);
(1)若,求的值;
(2)若,求的最大值;
(3)若,,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在R上的奇函數(shù),且當(dāng)時(shí),.若關(guān)于x的不等式只有兩個(gè)整數(shù)解,則實(shí)數(shù)a的取值范圍為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線的極坐標(biāo)方程為.以極點(diǎn)為原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)).
(1)判斷直線與曲線的位置關(guān)系,并說(shuō)明理由;
(2)若直線和曲線相交于,兩點(diǎn),求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com