【題目】在汶川大地震后對唐家山堰塞湖的搶險過程中,武警官兵準備用射擊的方法引爆從湖壩上游漂流而下的一個巨大的汽油罐.已知只有5發(fā)子彈,第一次命中只能使汽油流出,第二次命中才能引爆.每次射擊是相互獨立的,且命中的概率都是.

(1)求油罐被引爆的概率

(2)如果引爆或子彈打光則停止射擊,設射擊次數(shù)為,的分布列及.( 結(jié)果用分數(shù)表示)

【答案】(1);(2)分布列見解析,.

【解析】

試題分析:(1)借助題設條件運用獨立重復試驗及對立事件的概率公式求解;(2)借助題設運用隨機變量的數(shù)學期望公式探求.

試題解析:

(1)設命中油罐的次數(shù)為,則當時,油罐不能被引爆

,

,

油罐被引爆的概率.

(2)射擊次數(shù)的取值為2,3,4,5.

,

,

,

.

因此,的分布列為:

2

3

4

5

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,圓的參數(shù)方程為為參數(shù),在以原點為極點,軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為.

1求圓的普通方程和直線的直角坐標方程;

2設直線軸,軸分別交于兩點,點是圓上任一點,求兩點的極坐標和面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}是公差為3的等差數(shù)列,數(shù)列{bn}是b1=1的等比數(shù)列,且.

分別求數(shù)列{an},{bn}的通項公式;

令cn= an bn,求數(shù)列{cn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了保護環(huán)境,2015年合肥市勝利工廠在市政府的大力支持下,進行技術改進:把二氧化碳轉(zhuǎn)化為某種化工產(chǎn)品,經(jīng)測算,該處理成本(萬元)與處理量(噸)之間的函數(shù)關系可近似地表示為:且每處理一噸二氧化碳可得價值為20萬元的某種化工產(chǎn)品.

(1)當時,判斷該技術改進能否獲利?如果能獲利,求出最大利潤;如果不能獲利,則國家至少需要補貼多少萬元,該工廠才不虧損?

(2)當處理量為多少噸時,每噸的平均處理成本最少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)其中.

時,若在其定義域內(nèi)為單調(diào)函數(shù),求的取值范圍;

時,是否存在實數(shù),使得時,不等式恒成立,如果存在,求的取值范圍,如果不存在,說明理由其中是自然對數(shù)的底數(shù),=2.71828.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】方程兩個不等的負根;方程實根.若”為真,“假,求取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,離心率為,點為坐標原點,若橢圓與曲線的交點分別為上),且兩點滿足

(1)求橢圓的標準方程;

(2)過橢圓上異于其頂點的任一點,作的兩條切線,切點分別為,且直線軸、軸上的截距分別為,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了在冬季供暖時減少能量損耗,房屋的屋頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元,該建筑物每年的能源消耗費用(單位:萬元)與隔熱層厚度(單位:)滿足關系:,若不建隔熱層,每年能源消耗費用為8萬元,設為隔熱層建造費用與20年的能源消耗費用之和.

(1)求的值及的表達式;

(2)隔熱層修建多厚時,總費用達到最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)求的單調(diào)區(qū)間和極值;

(2)證明:若存在零點,則在區(qū)間上僅有一個零點.

查看答案和解析>>

同步練習冊答案