若f(x)=x+2
1
0
f(x)dx,則
1
0
f(x)dx=
 
考點(diǎn):定積分
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:利用待定系數(shù)法結(jié)合積分的基本性質(zhì)和運(yùn)算即可得到結(jié)論.
解答: 解:因?yàn)?span id="baivhai" class="MathJye">
1
0
f(x)dx是個(gè)常數(shù),設(shè)為m,
所以f(x)=x+2m,
其原函數(shù)F(x)=
1
2
x2+2mx+C(C為常數(shù)),
所以可得方程m=
1
2
+2m,解得m=-
1
2

故答案為:-
1
2
點(diǎn)評(píng):本題主要考查函數(shù)解析式的求解,明確
1
0
f(x)dx是個(gè)常數(shù)以及利用待定系數(shù)法是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x+
a2
x
(a>0).
(1)求證:f(x)在(0,a]上是減函數(shù),在(a,+∞)上是增函數(shù);
(2)求函數(shù)g(x)=4x+
9
x
在[1,3]上最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,用作商法比較x2+3x+2與x+2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,an=
2
S
2
n
2Sn-1
(n≥2).
(1)求證:數(shù)列{
1
Sn
}為等差數(shù)列;
(2)求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα-cosα=
1
3
,則tanα+
1
tanα
=( 。
A、
8
9
B、
7
3
C、
9
4
D、
11
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上連續(xù)的偶函數(shù),f(x)的圖象向右平移一個(gè)單位長(zhǎng)度又得到一個(gè)奇函數(shù),且f(2)=-1,則f(8)+f(9)+f(10)+…+f(2012)+f(2013)+f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長(zhǎng)均相等的正三棱柱ABC-A1B1C1中,D為BC的中點(diǎn).
(1)求證:A1B∥平面AC1D;
(2)求C1C與平面AC1D所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角θ的終邊經(jīng)過點(diǎn)P(-4cosα,3cosα),α∈{α|π<α<2π,α≠
2
},則sinθ+cosθ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+ax+b=x}={a},冪函數(shù)f(x)經(jīng)過點(diǎn)(a,b),
(Ⅰ)求集合A;
(Ⅱ)求不等式f(x)≤x的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案