【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]設(shè)在平面上取定一個(gè)極坐標(biāo)系,以極軸作為直角坐標(biāo)系的x軸的正半軸,以θ= 的射線作為y軸的正半軸,以極點(diǎn)為坐標(biāo)原點(diǎn),長(zhǎng)度單位不變,建立直角坐標(biāo)系,已知曲線C的直角坐標(biāo)方程為x2+y2=2,直線l的參數(shù)方程 (t為參數(shù)).
(1)寫(xiě)出直線l的普通方程與曲線C的極坐標(biāo)方程;
(2)設(shè)平面上伸縮變換的坐標(biāo)表達(dá)式為 ,求C在此變換下得到曲線C'的方程,并求曲線C′內(nèi)接矩形的最大面積.

【答案】
(1)解:把直線l的參數(shù)方程 (t為參數(shù)),消去參數(shù),化為直角坐標(biāo)方程為 2x+y﹣2=0.

曲線C的直角坐標(biāo)方程為x2+y2=2,即 ρ2=2,即 ρ=


(2)解:設(shè)平面上伸縮變換的坐標(biāo)表達(dá)式為

曲線C在此變換下得到曲線C'的方程為 +Y2=2,即 + =1.

曲線C'的參數(shù)方程為 ,根據(jù)橢圓的對(duì)稱(chēng)性,曲線的內(nèi)接矩形的面積為4|XY|=8|sin2α|,

故當(dāng)α= 時(shí),曲線的內(nèi)接矩形的面積最大為8.


【解析】(1)把直線l的參數(shù)方程消去參數(shù),化為直角坐標(biāo)方程,曲線C的直角坐標(biāo)方程為x2+y2=2,即ρ2=2,化簡(jiǎn)可得結(jié)果.(2)先求得曲線C在此變換下得到曲線C'的方程為 +Y2=2,再求得曲線C'的參數(shù)方程為 ,根據(jù)橢圓的對(duì)稱(chēng)性,曲線的內(nèi)接矩形的面積為4|XY|=8|sin2α|,由此可得曲線的內(nèi)接矩形的面積最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定橢圓C: =1(a>b>0),稱(chēng)圓心在原點(diǎn)O,半徑為 的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為F( ,0),其短軸上的一個(gè)端點(diǎn)到F的距離為
(Ⅰ)求橢圓C的方程和其“準(zhǔn)圓”方程;
(Ⅱ)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的動(dòng)點(diǎn),過(guò)點(diǎn)P作橢圓的切線l1 , l2交“準(zhǔn)圓”于點(diǎn)M,N.
(。┊(dāng)點(diǎn)P為“準(zhǔn)圓”與y軸正半軸的交點(diǎn)時(shí),求直線l1 , l2的方程并證明l1⊥l2;
(ⅱ)求證:線段MN的長(zhǎng)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若存在正常數(shù)a,b,使得x∈R有f(x+a)≤f(x)+b恒成立,則稱(chēng)f(x)為“限增函數(shù)”.給出下列三個(gè)函數(shù):①f(x)=x2+x+1;② ;③f(x)=sin(x2),其中是“限增函數(shù)”的是(
A.①②③
B.②③
C.①③
D.③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過(guò)x的部分按平價(jià)收費(fèi),超過(guò)x的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)若將頻率視為概率,從該城市居民中隨機(jī)抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為X,求X的分布列與數(shù)學(xué)期望.
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn)x(噸),估計(jì)x的值(精確到0.01),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果是8,則判斷框內(nèi)m的取值范圍是(
A.(30,42]
B.(42,56]
C.(56,72]
D.(30,72)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】知 =(2λsinx,sinx+cosx), =( cosx,λ(sinx﹣cosx))(λ>0),函數(shù)f(x)= 的最大值為2.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,cosA= ,若f(A)﹣m>0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P在圓C:x2+y2=4上,而Q為P在x軸上的投影,且點(diǎn)N滿足 ,設(shè)動(dòng)點(diǎn)N的軌跡為曲線E.
(1)求曲線E的方程;
(2)若A,B是曲線E上兩點(diǎn),且|AB|=2,O為坐標(biāo)原點(diǎn),求△AOB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一顆骰子投擲兩次,第一次出現(xiàn)的點(diǎn)數(shù)記為a,第二次出現(xiàn)的點(diǎn)數(shù)記為b,設(shè)兩條直線l1:ax+by=2與l2:x+2y=2平行的概率為P1 , 相交的概率為P2 , 則點(diǎn)P(36P1 , 36P2)與圓C:x2+y2=1098的位置關(guān)系是(
A.點(diǎn)P在圓C上
B.點(diǎn)P在圓C外
C.點(diǎn)P在圓C內(nèi)
D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= cos2x﹣2cos2(x+ )+1.
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)求f(x)在區(qū)間[0, ]上的最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案