鑫隆房地產(chǎn)公司用2160萬元購得一塊空地,計劃在該地塊上建造一棟至少10層、每層2000平方米的樓房.經(jīng)測算,如果將樓房建為層,則每平方米的平均建筑費用為(單位:元).為了使樓房每平方米的平均綜合費用最少,該樓房應(yīng)建為多少層?(注:平均綜合費用=平均建筑費用+平均購地費用,平均購地費用=
為了樓房每平方米的平均綜合費最少,該樓房應(yīng)建為15層。

試題分析:設(shè)樓房每平方米的平均綜合費為元,則
 3分
方法一: ,   5分 
 得   7分
當(dāng)  時, ;當(dāng) 時,,
因此 當(dāng)時,取最小值 10分
(方法二:, 8分
當(dāng)且僅當(dāng)時成立,即時, 10分)

答:為了樓房每平方米的平均綜合費最少,該樓房應(yīng)建為15層。 12分
點評:與函數(shù)有關(guān)的應(yīng)用題,經(jīng)常涉及物價、路程、產(chǎn)值、環(huán)保等實際問題,也可涉及角度、面積、體積、造價的最優(yōu)化問題。解答這類問題的關(guān)鍵是確切建立相應(yīng)的函數(shù)解析式,然后應(yīng)用函數(shù)、方程和不等式的有關(guān)知識加以綜合解答。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)是R上的奇函數(shù),若對于,都有, 時,的值為  
A.B.C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)的定義域為,且滿足為 奇函數(shù),為偶函數(shù),則下列說法中一定正確的有        
(1)的圖像關(guān)于直線對稱
(2)的周期為 
(3)  
(4)上只有一個零點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若函數(shù)有最 大值,求實數(shù)的值
(2)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)規(guī)定:給出一個實數(shù),賦值,若,則繼續(xù)賦值, ,以此類推,若,則,否則停止賦值,如果得到稱為賦值了.已知賦值了次后停止,則的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),則,有的大小關(guān)系為
A.B.
C.D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)).
(1)若函數(shù)處取得極大值,求的值;
(2)時,函數(shù)圖象上的點都在所表示的區(qū)域內(nèi),求的取值范圍;
(3)證明:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù),在上是減少的,則的取值范圍是    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知A、B兩地的路程為240千米.某經(jīng)銷商每天都要用汽車或火車將噸保鮮品一次 性由A地運往B地.受各種因素限制,下一周只能采用汽車和火車中的一種進(jìn)行運輸,且須提前預(yù)訂.
現(xiàn)有貨運收費項目及收費標(biāo)準(zhǔn)表、行駛路程s(千米)與行駛時間t(時)的函數(shù)圖象(如圖1)、上周貨運量折線統(tǒng)計圖(如圖2)等信息如下:
貨運收費項目及收費標(biāo)準(zhǔn)表
運輸工具
運輸費單價:元/(噸•千米)
冷藏費單價:元/(噸•時)
固定費用:元/次
汽車
2
5
200
火車
1.6
5
2280
          
(1)汽車的速度為       千米/時,火車的速度為       千米/時:
(2)設(shè)每天用汽車和火車運輸?shù)目傎M用分別為(元)和(元),分別求的函數(shù)關(guān)系式(不必寫出的取值范圍),及為何值時(總費用=運輸費+冷藏費+固定費用)
(3)請你從平均數(shù)、折線圖走勢兩個角度分析,建議該經(jīng)銷商應(yīng)提前為下周預(yù)定哪種運輸工具,才能使每天的運輸總費用較。

查看答案和解析>>

同步練習(xí)冊答案