已知拋物線x2=4y上有一條長為6的動弦AB,則AB的中點到x軸的最短距離為(  )

A.        B.

C.1          D.2

 

【答案】

D

【解析】由題意知,拋物線的準線l:y=-1,過A作AA1⊥l于A1,過B作BB1⊥l于B1,設弦AB的中點為M,過M作MM1⊥l于M1.則|MM1|=.|AB|≤|AF|+|BF|(F為拋物線的焦點),即|AF|+|BF|≥6,|AA1|+|BB1|≥6,2|MM1|≥6,|MM1|≥3,故M到x軸的距離d≥2.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:設計選修數(shù)學2-1蘇教版 蘇教版 題型:044

如圖,已知拋物線x2=4y與圓x2+y2=32相交于A、B兩點,圓與y軸正半軸交于C點,直線l是圓的切線,交拋物線于M、N,并且切點在上,

(1)求A、B、C點的坐標;

(2)當M、N兩點到拋物線焦點距離和最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:吉林省東北師大附中2009屆高三第三次摸底考試(數(shù)學理) 題型:044

已知拋物線x2=4y,過定點M0(0,m)(m>0)的直線l交拋物線于A、B兩點.

(Ⅰ)分別過A、B作拋物線的兩條切線,A、B為切點,求證:這兩條切線的交點P(x0,y0)在定直線y=-m上.

(Ⅱ)當m>2時,在拋物線上存在不同的兩點P、Q關于直線l對稱,弦長|PQ|中是否存在最大值?若存在,求其最大值(用m表示),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線x2=4y的焦點為F,AB是拋物線上的兩動點,且=λλ>0).過A、B兩點分別作拋物線的切線,設其交點為

(Ⅰ)證明·為定值;(Ⅱ)設△ABM的面積為S,寫出Sf(λ)的表達式,并求S的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線x2=4y的焦點為F,AB是拋物線上的兩動點,且=λλ>0).過AB兩點分別作拋物線的切線,設其交點為

(Ⅰ)證明·為定值;(Ⅱ)設△ABM的面積為S,寫出Sf(λ)的表達式,并求S的最小值.

查看答案和解析>>

同步練習冊答案