【題目】如圖所示,平面平面,四邊形為矩形, ,點(diǎn)為的中點(diǎn).
(1)證明: 平面.
(2)點(diǎn)為上任意一點(diǎn),在線段上是否存在點(diǎn),使得?若存在,確定點(diǎn)的位置,并加以證明;若不存在,請說明理由.
【答案】(1)見解析;(2)中點(diǎn)
【解析】試題分析:
(1)連接交于,連接,利用是矩形得到,再由線面平行的判定定理可證;
(2)當(dāng)為中點(diǎn)時(shí),有;取中點(diǎn),連接,結(jié)合三角形的中位線性質(zhì)以及面面平行的性質(zhì)進(jìn)行推理得到平面即可.
試題解析:
(1)證明 連接AC交BD于O,連接OF,如圖①.
∵四邊形ABCD是矩形,∴O為AC的中點(diǎn),又F為EC的中點(diǎn),
∴OF為△ACE的中位線,:∴OF∥AE,又OF平面BDF,
AE平面BDF,∴AE∥平面BDF.
(2)當(dāng)P為AE中點(diǎn)時(shí),有PM⊥BE,
證明如下:取BE中點(diǎn)H,連接DP,PH,CH,
如圖
∵P為AE的中點(diǎn),H為BE的中點(diǎn),
∴PH∥AB,又AB∥CD,∴PH∥CD,
∴P,H,C,D四點(diǎn)共面.
∵平面ABCD∥平面BCE,CD⊥BC
∴CD⊥平面BCE,又BE平面BCE,
∴CD⊥BE∵BC=CE,H為BE的中點(diǎn),
∴CH⊥BE,
∴BE⊥平面DPHC,又PM平面DPHC,
∴BE⊥PM即PM⊥BE
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
設(shè)農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=bx+a;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注:==,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,橢圓: ()的離心率為,左焦點(diǎn)為,右焦點(diǎn)為,短軸兩個(gè)端點(diǎn)、,與軸不垂直的直線與橢圓交于不同的兩點(diǎn)、,記直線、的斜率分別為、,且.
(1)求橢圓的方程;
(2)求證直線與軸相交于定點(diǎn),并求出定點(diǎn)坐標(biāo);
(3)當(dāng)弦的中點(diǎn)落在內(nèi)(包括邊界)時(shí),求直線的斜率的取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)若點(diǎn),在中按均勻分布出現(xiàn).
(1)點(diǎn)橫、縱坐標(biāo)分別由擲骰子確定,第一次確定橫坐標(biāo),第二次確定縱坐標(biāo),則點(diǎn)落在上述區(qū)域的概率?
(2)試求方程有兩個(gè)實(shí)數(shù)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)= sin(2x﹣ )+1的圖象向左平移 個(gè)單位長度,再向下平移1個(gè)單位長度,得到函數(shù)g(x)的圖象,則函數(shù)g(x)具有性質(zhì) . (填入所有正確性質(zhì)的序號)
①最大值為 ,圖象關(guān)于直線x= 對稱;
②在(﹣ ,0)上單調(diào)遞增,且為偶函數(shù);
③最小正周期為π.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=kax﹣a﹣x(a>0且a≠1)在(﹣∞,+∞)上既是奇函數(shù)又是增函數(shù),則函數(shù)g(x)=loga(x+k)的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在框圖中,設(shè)x=2,并在輸入框中輸入n=4;ai=i(i=0,1,2,3,4).則此程序執(zhí)行后輸出的S值為( )
A. 26 B. 49 C. 52 D. 98
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com