如圖,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為的正方形,并且PD=,PA=PC=
2
a

(1)求證:PD⊥平面ABCD;
(2)求異面直線PB與AC所成的角;
(3)求二面角A-PB-D的大。
分析:(1)通過計(jì)算證明AD⊥PD.PD⊥CD.然后利用線面垂直的判定可證證明PD⊥平面ABCD
(2)連BD,因ABCD是正方形,根據(jù)BD⊥AC,PD⊥平面ABCD.由三垂線定理得PB⊥AC,從而可求PB與AC所成的角.
(3)取AP中點(diǎn)E,過E作EF⊥PB,垂足為F,∠DFE為所求,通過解三角形求出∠DFE=60°.
解答:解:(1)PC=
2
a
,PD=DC=a,∴△PDC是Rt△,且PD⊥DC,
同理PD⊥AD,又AD∩DC=D,∴PD⊥平面ABCD.
(2)連BD,因ABCD是正方形,∴BD⊥AC,又PD⊥平面ABCD.
BD是PB在面ABCD上的射影,由三垂線定理得PB⊥AC,∴PB與AC成90°角.
(3)設(shè)AC∩BD=O,作AE⊥PB于E,連OE,
∵AC⊥BD,又PD⊥平面ABCD,AC?平面ABCD,∴PD⊥AC,
又PD∩BD=D,∴AC⊥平面PDB,則OE是AE在平面PDB上的射影.
由三垂線定理逆定理知OE⊥PB,∴∠AEO是二面角A-PB-D的平面角.
又AB=a,PA=
2
a
,PB=
3
a
,∵PD⊥平面ABCD,DA⊥AB,
∴PA⊥AB,在Rt△PAB中,AE•PB=PA•AB.∴AE=
2
3
a
,又AO=
2
2
a

sinAEO=
AO
OE
=
3
2
,∠AEO=60°,二面角A-PB-D的大小為60°.
點(diǎn)評(píng):本題以四棱錐為載體,考查空間線面關(guān)系、二面角的度量等知識(shí),考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運(yùn)算求解能力,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點(diǎn)A在PD上的射影為點(diǎn)G,點(diǎn)E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長(zhǎng);
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長(zhǎng)為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點(diǎn)
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案