【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知bcosC=(2a﹣c)cosB. (Ⅰ)求B;
(Ⅱ)若c=2,b=3,求△ABC的面積.
【答案】解:(Ⅰ)由已知及正弦定理得sinBcosC=(2sinA﹣sinC)cosB=2sinAcosB﹣sinCcosB. 則sinBcosC+sinCcosB=2sinAcosB.
sin(B+C)=2sinAcosB,
故sinA=2sinAcosB.
因為,在△ABC中,sinA≠0.
所以 , .
(Ⅱ)由已知及余弦定理得9=4+a2﹣4acosB,
又 ,
所以:a2﹣2a﹣5=0,解得:a=1+ ,或a=1﹣ (舍去),
所以:S△ABC= acsinB= (1+ )× =
【解析】(Ⅰ)由已知及正弦定理,兩角和的正弦函數(shù)公式,三角形內(nèi)角和定理,誘導(dǎo)公式化簡可得sinA=2sinAcosB.結(jié)合sinA≠0.可求cosB,利用特殊角的三角函數(shù)值即可求得B的值.(Ⅱ)由已知及余弦定理得a2﹣2a﹣5=0,解得a的值,進而利用三角形面積公式即可得解.
【考點精析】掌握正弦定理的定義和余弦定理的定義是解答本題的根本,需要知道正弦定理:;余弦定理:;;.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點P(2,0),且正方形ABCD內(nèi)接于⊙O:x2+y2=1,M、N分別為邊AB、BC的中點.當正方形ABCD繞圓心O旋轉(zhuǎn)時, 的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[不等式選講]
設(shè)函數(shù)f(x)=a(x﹣1).
(Ⅰ)當a=1時,解不等式|f(x)|+|f(﹣x)|≥3x;
(Ⅱ)設(shè)|a|≤1,當|x|≤1時,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年1月某校高三年級1600名學(xué)生參加了教育局組織的期末統(tǒng)考,已知數(shù)學(xué)考試成績X~N(100,σ2)(試卷滿分為150分).統(tǒng)計結(jié)果顯示數(shù)學(xué)考試成績在80分到120分之間的人數(shù)約為總?cè)藬?shù)的 ,則此次統(tǒng)考中成績不低于120分的學(xué)生人數(shù)約為( )
A.80
B.100
C.120
D.200
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的短軸長為2 ,離心率e= ,
(1)求橢圓C的標準方程:
(2)若F1、F2分別是橢圓C的左、右焦點,過F2的直線l與橢圓C交于不同的兩點A、B,求△F1AB的內(nèi)切圓半徑的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系xoy 中,直線l的參數(shù)方程為 ,(t為參數(shù)).在極坐標系(與直角坐標系xoy取相同的長度單位,且以原點o為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=4cosθ. (Ⅰ)求圓C在直角坐標系中的方程;
(Ⅱ)若圓C與直線l相切,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年下半年,錦陽市教體局舉行了市教育系統(tǒng)直屬單位職工籃球比賽,以增強直屬單位間的交流與合作,組織方統(tǒng)計了來自A1 , A2 , A3 , A4 , A5等5個直屬單位的男子籃球隊的平均身高與本次比賽的平均得分,如表所示:
單位 | A1 | A2 | A3 | A4 | A5 |
平均身高x(單位:cm) | 170 | 174 | 176 | 181 | 179 |
平均得分y | 62 | 64 | 66 | 70 | 68 |
注:回歸當初 中斜率和截距最小二乘估計公式分別為 , .
(1)根據(jù)表中數(shù)據(jù),求y關(guān)于x的線性回歸方程;(系數(shù)精確到0.01)
(2)若M隊平均身高為185cm,根據(jù)(I)中所求得的回歸方程,預(yù)測M隊的平均得分(精確到0.01)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)M,N為兩個隨機事件,給出以下命題: (1.)若M、N為互斥事件,且 , ,則 ;
(2.)若 , , ,則M、N為相互獨立事件;
(3.)若 , , ,則M、N為相互獨立事件;
(4.)若 , , ,則M、N為相互獨立事件;
(5.)若 , , ,則M、N為相互獨立事件;
其中正確命題的個數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在常數(shù)k(k∈N* , k≥2)、q、d,使得無窮數(shù)列{an}滿足 則稱數(shù)列{an}為“段比差數(shù)列”,其中常數(shù)k、q、d分別叫做段長、段比、段差.設(shè)數(shù)列{bn}為“段比差數(shù)列”.
(1)若{bn}的首項、段長、段比、段差分別為1、3、q、3. ①當q=0時,求b2016;
②當q=1時,設(shè){bn}的前3n項和為S3n , 若不等式 對n∈N*恒成立,求實數(shù)λ的取值范圍;
(2)設(shè){bn}為等比數(shù)列,且首項為b,試寫出所有滿足條件的{bn},并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com