本題14分)已知動圓過點(diǎn),且與圓相內(nèi)切.

(1)求動圓的圓心的軌跡方程;

(2)設(shè)直線(其中與(1)中所求軌跡交于不同兩點(diǎn),,與雙曲線 交于不同兩點(diǎn),問是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.

 

【答案】

解:(1), 圓心的坐標(biāo)為,半徑.

∴點(diǎn)在圓內(nèi).                                                   

設(shè)動圓的半徑為,圓心為,依題意得,且

.                                              

∴圓心的軌跡是中心在原點(diǎn),以兩點(diǎn)為焦點(diǎn),長軸長為的橢圓,設(shè)其方程為

,  則.

.

∴所求動圓的圓心的軌跡方程為.                          

 (2)   消去化簡整理得:.

設(shè),,則.

.  ①                             

 消去化簡整理得:.

設(shè),則,

.  ②                          

,即,

.

.

解得.                                                                     

當(dāng)時,由①、②得  ,

Z,

的值為 ,;

當(dāng),由①、②得 

Z,

.

∴滿足條件的直線共有9條.         

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)文卷 題型:解答題

(本題滿分14分)

已知動圓過定點(diǎn),且與定直線相切.

(1)求動圓圓心的軌跡的方程;

(2)若是軌跡的動弦,且, 分別以、為切點(diǎn)作軌跡的切線,設(shè)兩切線交點(diǎn)為,證明:.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆廣東省高二第一學(xué)期期末考試文科數(shù)學(xué) 題型:解答題

(本題滿分14分)

已知動圓過定點(diǎn)P(1,0)且與定直線相切,點(diǎn)C在上.

(Ⅰ)求動圓圓心M的軌跡方程;

(Ⅱ)設(shè)過點(diǎn)P且斜率為的直線與曲線交于A、B兩點(diǎn).問直線上是否存在點(diǎn)C ,使得是以為直角的直角三角形?如果存在,求出點(diǎn)C的坐標(biāo);若不能,請說明理由.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題14分)已知動圓過點(diǎn),且與圓相內(nèi)切.

(1)求動圓的圓心的軌跡方程;

(2)設(shè)直線(其中與(1)中所求軌跡交于不同兩點(diǎn),,與雙曲線 交于不同兩點(diǎn),問是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省揭陽市第一中學(xué)高二上學(xué)期期末檢測數(shù)學(xué)理卷 題型:解答題

本題14分)已知動圓過點(diǎn),且與圓相內(nèi)切.
(1)求動圓的圓心的軌跡方程;
(2)設(shè)直線(其中與(1)中所求軌跡交于不同兩點(diǎn),與雙曲線 交于不同兩點(diǎn),問是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案