精英家教網 > 高中數學 > 題目詳情
如圖,在正方體ABCD-A1B1C1D1中,P是棱BC的中點,Q在棱CD上.且DQ=λDC,若二面角P-C1Q-C的余弦值為,求實數λ的值.

【答案】分析:以A點為坐標原點,AB為x軸,AD為y軸,AA1為z軸,建立空間直角坐標系,設正方體的棱長為4,分別求出平面C1PQ法向量和面C1PQ的一個法向量,然后求出兩法向量的夾角,建立等量關系,即可求出參數λ的值.
解答:解:以為正交基底,
建立如圖所示的空間直角坐標系A-xyz,
設正方體的棱長為4,則各點的坐標分別為
A(0,0,0),B(4,0,0),C(4,4,0),D(0,4,0);
A1(0,0,4),B1(4,0,4),C1(4,4,4),
D1(0,4,4),P(4,2,0),Q(4λ,4,0).(2分)
設平面C1PQ法向量為,
,,
所以,
可得一個法向量=(1,-2(λ-1),(λ-1)),(6分)
設面C1PQ的一個法向量為,
,(8分)
即:,又因為點Q在棱CD上,所以.(10分)
點評:本題主要考查了二面角的度量,準確的建系,確定點坐標,熟悉向量的坐標表示,熟悉空間向量的計算在幾何位置的證明,在有關線段,角的計算中的計算方法是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網若Rt△ABC中兩直角邊為a、b,斜邊c上的高為h,則
1
h2
=
1
a2
+
1
b2
,如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,記M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M、N的大小關系是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,記M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M,N的大小關系是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網若Rt△ABC中兩直角邊為a、b,斜邊c上的高為h,則
1
h2
=
1
a2
+
1
b2
,如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,類比平面幾何中的結論,得到此三棱錐中的一個正確結論為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E為DD1的中點,
(1)求證:AC⊥平面D1DB;
(2)BD1∥平面ABC.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,點P是上底面A1B1C1D1內一動點,則三棱錐P-ABC的主視圖與左視圖的面積的比值為( 。

查看答案和解析>>

同步練習冊答案