【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)M的直角坐標(biāo)為(1,0),若直線l的極坐標(biāo)方程為 ρcos(θ+ )﹣1=0,曲線C的參數(shù)方程是 (t為參數(shù)).
(1)求直線l和曲線C的普通方程;
(2)設(shè)直線l與曲線C交于A,B兩點(diǎn),求 + .
【答案】
(1)解:因為 ,
所以ρcosθ﹣ρsinθ﹣1=0
由x=ρcosθ,y=ρsinθ,
得x﹣y﹣1=0
因為 消去t得y2=4x,
所以直線l和曲線C的普通方程分別為x﹣y﹣1=0和y2=4x
(2)解:點(diǎn)M的直角坐標(biāo)為(1,0),點(diǎn)M在直線l上,
設(shè)直線l的參數(shù)方程: (t為參數(shù)),A,B對應(yīng)的參數(shù)為t1,t2.
,
,
∴ = = = =1
【解析】(1)直線l的極坐標(biāo)方程化為ρcosθ﹣ρsinθ﹣1=0,由x=ρcosθ,y=ρsinθ,能求出直線l的普通方程;曲線C的參數(shù)方程消去參數(shù)能求出曲線C的普通方程.(2)點(diǎn)M的直角坐標(biāo)為(1,0),點(diǎn)M在直線l上,求出直線l的參數(shù)方程,得到 ,由此利用韋達(dá)定理能求出 的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空中有一氣球,在它的正西方A點(diǎn)測得它的仰角為45°,同時在它南偏東60°的B點(diǎn),測得它的仰角為30°,已知A、B兩點(diǎn)間的距離為107米,這兩個觀測點(diǎn)均離地1米,則測量時氣球離地的距離是_____米.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: + =1(a>b>0)的左、右焦點(diǎn)分別為F1 , F2 , O為坐標(biāo)原點(diǎn),點(diǎn)P(1, )在橢圓上,連接PF1交y軸于點(diǎn)Q,點(diǎn)Q滿足 = .直線l不過原點(diǎn)O且不平行于坐標(biāo)軸,l與橢圓C有兩個交點(diǎn)A,B. (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn)M( ,0),若直線l過橢圓C的右焦點(diǎn)F2 , 證明: 為定值;
(Ⅲ)若直線l過點(diǎn)(0,2),設(shè)N為橢圓C上一點(diǎn),且滿足 + =λ ,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)f(x)是定義在R上的偶函數(shù),f(x+1)為奇函數(shù),f(0)=0,當(dāng)x∈(0,1]時,f(x)=log2x,則在區(qū)間(8,9)內(nèi)滿足方f(x)程f(x)+2=f( )的實(shí)數(shù)x為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,AB⊥平面BB1C1C,∠BCC1= ,AB=BB1=2,BC=1,D為CC1中點(diǎn).
(1)求證:DB1⊥平面ABD;
(2)求二面角A﹣B1D﹣A1的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,對任意滿足,且,數(shù)列滿足,其前9項和為63.
(1)求數(shù)列和的通項公式;
(2)令,數(shù)列的前項和為,若對任意正整數(shù),都有,求實(shí)數(shù)的取值范圍;
(3)將數(shù)列的項按照“當(dāng)為奇數(shù)時,放在前面;當(dāng)為偶數(shù)時,放在前面”的要求進(jìn)行“交叉排列”,得到一個新的數(shù)列:,求這個新數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an},{bn}滿足 , ,其中n∈N+ . (I)求證:數(shù)列{bn}是等差數(shù)列,并求出數(shù)列{an}的通項公式;
(II)設(shè) ,求數(shù)列{cncn+2}的前n項和為Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司年會舉行抽獎活動,每位員工均有一次抽獎機(jī)會.活動規(guī)則如下:一只盒子里裝有大小相同的6個小球,其中3個白球,2個紅球,1個黑球,抽獎時從中一次摸出3個小球,若所得的小球同色,則獲得一等獎,獎金為300元;若所得的小球顏色互不相同,則獲得二等獎,獎金為200元;若所得的小球恰有2個同色,則獲得三等獎,獎金為100元.
(1)求小張在這次活動中獲得的獎金數(shù)的概率分布及數(shù)學(xué)期望;
(2)若每個人獲獎與否互不影響,求該公司某部門3個人中至少有2個人獲二等獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三課外興趣小組為了解高三同學(xué)高考結(jié)束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級1500名男生、1000名女生中按分層抽樣的方式抽取125名學(xué)生進(jìn)行問卷調(diào)查,情況如下表:
打算觀看 | 不打算觀看 | |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中數(shù)據(jù)b,c;
(2)判斷是否有99%的把握認(rèn)為觀看2018年足球世界杯比賽與性別有關(guān);
(3)為了計算“從10人中選出9人參加比賽”的情況有多少種,我們可以發(fā)現(xiàn)它與“從10人中選出1人不參加比賽”的情況有多少種是一致的.現(xiàn)有問題:在打算觀看2018年足球世界杯比賽的同學(xué)中有5名男生、2名女生來自高三(5)班,從中推選5人接受校園電視臺采訪,請根據(jù)上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com