【題目】“既要金山銀山,又要綠水青山”。某風(fēng)景區(qū)在一個(gè)直徑為米的半圓形花圓中設(shè)計(jì)一條觀光線路。打算在半圓弧上任選一點(diǎn)(與不重合),沿修一條直線段小路,在路的兩側(cè)(注意是兩側(cè))種植綠化帶;再沿弧修一條弧形小路,在小路的一側(cè)(注意是一側(cè))種植綠化帶,小路與綠化帶的寬度忽略不計(jì)。
(1)設(shè)(弧度),將綠化帶的總長(zhǎng)度表示為的函數(shù);
(2)求綠化帶的總長(zhǎng)度的最大值。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=,g(x)=x++a,其中a為常數(shù).
(1)若g(x)≥0的解集為{x|0<x或x≥3},求a的值;
(2)若x1∈(0,+∞),x2∈[1,2]使f(x1)≤g(x2)求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),不等式恒成立,試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的左、右頂點(diǎn)分別為,直線與雙曲線交于,直線交直線于點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)若點(diǎn)的軌跡與矩形的四條邊都相切,探究矩形對(duì)角線長(zhǎng)是否為定值,若是,求出此值;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,下有七張卡片,現(xiàn)這樣組成一個(gè)三位數(shù):甲從這七張卡片中隨機(jī)抽出一張,把卡片上的數(shù)字寫(xiě)在百位,然后把卡片放回;乙再?gòu)倪@七張卡片中隨機(jī)抽出一張,把卡片上的數(shù)字寫(xiě)在十位,然后把卡片放回;丙又從這七張卡片中隨機(jī)抽出一張,把卡片上的數(shù)字寫(xiě)在個(gè)位,然后把卡片放回。則這樣組成的三位數(shù)的個(gè)數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于定義域?yàn)?/span>的函數(shù),若同時(shí)滿足下列三個(gè)條件:① ;② 當(dāng),且時(shí),都有 ;③ 當(dāng),且時(shí),都有, 則稱為“偏對(duì)稱函數(shù)”.現(xiàn)給出下列三個(gè)函數(shù): ; ; 則其中是“偏對(duì)稱函數(shù)”的函數(shù)個(gè)數(shù)為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式。某機(jī)構(gòu)為了調(diào)查人們對(duì)此種交通方式的滿意度,從交通擁堵不嚴(yán)重的A城市和交通擁堵嚴(yán)重的B城市分別隨機(jī)調(diào)查了20個(gè)用戶,得到了一個(gè)用戶滿意度評(píng)分的樣本,并繪制出莖葉圖如圖:
(1)根據(jù)莖葉圖,比較兩城市滿意度評(píng)分的平均值的大小及方差的大。ú灰笥(jì)算出具體值,給出結(jié)論即可);
(2)若得分不低于80分,則認(rèn)為該用戶對(duì)此種交通方式“認(rèn)可”,否則認(rèn)為該用戶對(duì)此種交通方式“不認(rèn)可”,請(qǐng)根據(jù)此樣本完成此2×2列聯(lián)表,并據(jù)此樣本分析是否有95%的把握認(rèn)為城市擁堵與認(rèn)可共享單車有關(guān);
A | B | 合計(jì) | |
認(rèn)可 | |||
不認(rèn)可 | |||
合計(jì) |
(3)在A,B城市對(duì)此種交通方式“認(rèn)可”的用戶中按照分層抽樣的方法抽取6人,若在此6人中推薦2人參加“單車維護(hù)”志愿活動(dòng),求A城市中至少有1人的概率。
參考數(shù)據(jù)如下:(下面臨界值表供參考)
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).
(1)求實(shí)數(shù)的值;
(2)判斷的單調(diào)性并用定義證明;
(3)已知不等式恒成立, 求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下命題正確的是( )
A. 若直線,,,則直線a,b異面
B. 空間內(nèi)任意三點(diǎn)可以確定一個(gè)平面
C. 空間四點(diǎn)共面,則其中必有三點(diǎn)共線
D. 直線,,,則直線a,b異面
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com