一個(gè)棱錐的三視圖如圖,則該棱錐的表面積(單位:c)為(    )
A.48+12B.48+24C.36+12D.36+24
A

試題分析:
由三視圖及題設(shè)條件知,此幾何體為一個(gè)三棱錐,其高已知,底面是長(zhǎng)度為6的直角三角形,故先求出底面積,再各個(gè)側(cè)面積,最后相加即可得全面積解:此幾何體為一個(gè)三棱錐,其底面是邊長(zhǎng)為6的等腰直角三角形,頂點(diǎn)在底面的投影是斜邊的中點(diǎn),由底面是邊長(zhǎng)為6的等腰直角三角形知其底面積是 ×6×6=18,又直角三角形斜邊的中點(diǎn)到兩直角邊的距離都是3,棱錐高為4,, 所以三個(gè)側(cè)面中與底面垂直的側(cè)面三角形高是4,底面邊長(zhǎng)為6,其余兩個(gè)側(cè)面的斜高5,故三個(gè)側(cè)面中與底面垂直的三角形的面積為,×4×6=12另兩個(gè)側(cè)面三角形的面積都是×6×5=15,故此幾何體的全面積是18+2×15+12=48+12故選A
點(diǎn)評(píng):本題考點(diǎn)是由三視圖求幾何體的面積、體積,考查對(duì)三視圖的理解與應(yīng)用,主要考查三視圖與實(shí)物圖之間的關(guān)系,用三視圖中的數(shù)據(jù)還原出實(shí)物圖的數(shù)據(jù),再根據(jù)相關(guān)的公式求表面積與體積,本題求的是三棱錐的體積.三視圖的投影規(guī)則是:“主視、俯視 長(zhǎng)對(duì)正;主視、左視高平齊,左視、俯視 寬相等”.三視圖是高考的新增考點(diǎn),不時(shí)出現(xiàn)在高考試題中,應(yīng)予以重視
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知某個(gè)幾何體的三視圖如右圖,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個(gè)幾何體的體積是(  ).
A.cm3B.cm3
C.2 000 cm3D.4 000 cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若圓錐的表面積,側(cè)面展開(kāi)圖的圓心角為,則該圓錐的體積為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

右圖是一個(gè)幾何體的正(主)視圖和側(cè)(左)視圖,其俯視圖是面積為的矩形.則該幾何體的表面積是(   )
A.B.
C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)長(zhǎng)方體的三條棱長(zhǎng)分別為、,若長(zhǎng)方體所有棱長(zhǎng)度之和為,一條對(duì)角線長(zhǎng)度為,體積為,則等于(     ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知某幾何體的三視圖如圖所示,若該幾何體的體積為24,則正(主)視圖中的值為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一個(gè)三棱錐的三視圖如圖所示,則該幾何體的表面積為(   )
A.B.
C.D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

一個(gè)正三棱柱的側(cè)棱長(zhǎng)和底邊長(zhǎng)相等,體積為,它的三視圖中的俯視圖如圖所示,左視圖是一個(gè)矩形,則這個(gè)矩形的面積是           

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

將長(zhǎng)方體截去一個(gè)四棱錐得到的幾何體如圖所示,則該幾何體的側(cè)視圖為

              
A.        B.       C.       D.

查看答案和解析>>

同步練習(xí)冊(cè)答案