【題目】△ABC在內(nèi)角A、B、C的對(duì)邊分別為a,b,c,已知a=bcosC+csinB.
(1)求B;
(2)若b=2,求△ABC面積的最大值.

【答案】
(1)解:由已知及正弦定理得:sinA=sinBcosC+sinBsinC①,

∵sinA=sin(B+C)=sinBcosC+cosBsinC②,

∴sinB=cosB,即tanB=1,

∵B為三角形的內(nèi)角,

∴B= ;


(2)解:SABC= acsinB= ac,

由已知及余弦定理得:4=a2+c2﹣2accos ≥2ac﹣2ac×

整理得:ac≤ ,當(dāng)且僅當(dāng)a=c時(shí),等號(hào)成立,

則△ABC面積的最大值為 × × = × ×(2+ )= +1.


【解析】(1)已知等式利用正弦定理化簡(jiǎn),再利用兩角和與差的正弦函數(shù)公式及誘導(dǎo)公式變形,求出tanB的值,由B為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出B的度數(shù);(2)利用三角形的面積公式表示出三角形ABC的面積,把sinB的值代入,得到三角形面積最大即為ac最大,利用余弦定理列出關(guān)系式,再利用基本不等式求出ac的最大值,即可得到面積的最大值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解正弦定理的定義的相關(guān)知識(shí),掌握正弦定理:,以及對(duì)余弦定理的定義的理解,了解余弦定理:;;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),函數(shù)有四個(gè)不同的零點(diǎn),從小到大依次為,,,,的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某數(shù)學(xué)興趣小組共有12位同學(xué),下圖是他們某次數(shù)學(xué)競(jìng)賽成績(jī)(滿分100分)的莖葉圖,

其中有一個(gè)數(shù)字模糊不清,圖中用表示,規(guī)定成績(jī)不低于80分為優(yōu)秀.

(1)已知該12位同學(xué)競(jìng)賽成績(jī)的中位數(shù)為78,求圖中的值;

(2)從該12位同學(xué)中隨機(jī)選3位同學(xué),進(jìn)行競(jìng)賽試卷分析,

設(shè)其中成績(jī)優(yōu)秀的人數(shù)為,求的分布列及數(shù)學(xué)期望與方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)求的直角坐標(biāo)方程;

2)若有且僅有三個(gè)公共點(diǎn),求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,底面為直角三角形,,,,點(diǎn)是線段上一動(dòng)點(diǎn),則的最小值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015年推出一種新型家用轎車,購(gòu)買時(shí)費(fèi)用為16.9萬(wàn)元,每年應(yīng)交付保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)及汽油費(fèi)共1.2萬(wàn)元,汽車的維修費(fèi)為:第一年無(wú)維修費(fèi)用,第二年為0.2萬(wàn)元,從第三年起,每年的維修費(fèi)均比上一年增加0.2萬(wàn)元.

(I)設(shè)該輛轎車使用n年的總費(fèi)用(包括購(gòu)買費(fèi)用、保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)、汽油費(fèi)及維修費(fèi))為f(n),求f(n)的表達(dá)式;

(II)這種汽車使用多少報(bào)廢最合算(即該車使用多少年,年平均費(fèi)用最少)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4﹣﹣4;坐標(biāo)系與參數(shù)方程
已知?jiǎng)狱c(diǎn)P,Q都在曲線C: 上,對(duì)應(yīng)參數(shù)分別為β=α與β=2α(0<α<2π),M為PQ的中點(diǎn).
(1)求M的軌跡的參數(shù)方程
(2)將M到坐標(biāo)原點(diǎn)的距離d表示為α的函數(shù),并判斷M的軌跡是否過(guò)坐標(biāo)原點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(I)若,且對(duì)于,有恒成立,求的取值范圍;

(II)若,解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)生參加社會(huì)實(shí)踐活動(dòng),對(duì)某公司1月份至6月份銷售某種配件的銷售量及銷售單價(jià)進(jìn)行了調(diào)查,銷售單價(jià)x和銷售量y之間的一組數(shù)據(jù)如下表所示:

月份

1

2

3

4

5

6

銷售單價(jià)(元)

9

9.5

10

10.5

11

8

銷售量(件)

11

10

8

6

5

14.2

(1)根據(jù)1至5月份的數(shù)據(jù),求出y關(guān)于x的回歸直線方程;

(2)若由回歸直線方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)0.5元,則認(rèn)為所得到的回歸直線方程是理想的,試問(wèn)(1)中所得到的回歸直線方程是否理想?

(3)預(yù)計(jì)在今后的銷售中,銷售量與銷售單價(jià)仍然服從(1)中的關(guān)系,若該種機(jī)器配件的成本是2.5元/件,那么該配件的銷售單價(jià)應(yīng)定為多少元才能獲得最大利潤(rùn)?(注:利潤(rùn)=銷售收入-成本).

參考公式:回歸直線方程,其中,

查看答案和解析>>

同步練習(xí)冊(cè)答案