在公差為d的等差數(shù)列{an}中,已知a1=10,且a1,2a2+2,5a3成等比數(shù)列.
(1)求d,an;
(2)若d<0,求|a1|+|a2|+|a3|+…+|an|.
(1) d=-1, an=-n+11(n∈N*)或d=4,an=4n+6(n∈N*);(2)
解析試題分析:(1)由已知可得再由a1,2a2+2,5a3成等比數(shù)列得到:將通項(xiàng)代入即可得到關(guān)于d的方程,解此方程即可獲得d的值,將d的值代入通項(xiàng)中即可獲得;(2)求數(shù)列各項(xiàng)的絕對值和,關(guān)鍵在于弄清哪些項(xiàng)是正,哪些項(xiàng)是負(fù)后用絕對值的定義去掉絕對值符號轉(zhuǎn)化為等差數(shù)列前n項(xiàng)和的問題來加以解決,注意由分類討論解決.
試題解析:(1)由題意得,a1·5a3=(2a2+2)2, 1分
由a1=10,{an}為公差為d的等差數(shù)列得,d2-3d-4=0,
解得d=-1或d=4 3分
所以an=-n+11(n∈N*)或an=4n+6(n∈N*) 5分
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.
因?yàn)閐<0,由(1)得d=-1,an=-n+11, 6分
所以當(dāng)n≤11時,
|a1|+|a2|+|a3|+…+|an|=Sn=-n2+n 8分
當(dāng)n≥12時,
|a1|+|a2|+|a3|+…+|an|=-Sn+2S11=n2-n+110 11分
綜上所述,
|a1|+|a2|+|a3|+…+|an|= 12分
考點(diǎn):1.等差數(shù)列與等比數(shù)列;2.數(shù)列的前n項(xiàng)和.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=n2﹣n.
(1)求an;
(2)設(shè)數(shù)列{bn}滿足bn+1=2bn﹣an且b1=4,
(i)證明:數(shù)列{bn﹣2n}是等比數(shù)列,并求{bn}的通項(xiàng);
(ii)當(dāng)n≥2時,比較bn﹣1•bn+1與bn2的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的公差大于0,且是方程的兩根,數(shù)列的前項(xiàng)的和為,且.
(1) 求數(shù)列,的通項(xiàng)公式; (2) 記,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列滿足且是的等差中項(xiàng)
(1)求數(shù)列的通項(xiàng)公式;(2)若求使成立的正整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是首項(xiàng)的遞增等差數(shù)列,為其前項(xiàng)和,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足,為數(shù)列的前n項(xiàng)和.若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是等差數(shù)列,其中,前四項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式an;
(2)令,①求數(shù)列的前項(xiàng)之和
②是不是數(shù)列中的項(xiàng),如果是,求出它是第幾項(xiàng);如果不是,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的前項(xiàng)和為,,,
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前100項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知正項(xiàng)數(shù)列中,其前項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),,求證:;
(3)設(shè)為實(shí)數(shù),對任意滿足成等差數(shù)列的三個不等正整數(shù) ,不等式都成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com