【題目】已知函數(shù)f(x)=cos(2x-),x∈R.
(1)求函數(shù)f(x)單調(diào)遞減區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[-, ]上的最小值和最大值,并求出取得最值時x的值.
【答案】(1) 單調(diào)遞減區(qū)間是[kπ+,kπ+],k∈Z(2) f(x)max=, x=;
f(x)min=-1, x=
【解析】試題分析:(1)由題意,令,即可求解函數(shù)的單調(diào)遞減區(qū)間;
(2)由,則,即可得到的值域,即可求解函數(shù)的最值.
試題解析:
(1)當2kπ≤2x-≤2kπ+π,即kπ+≤x≤kπ+,k∈Z時,f(x)單調(diào)遞減,
∴f(x)的單調(diào)遞減區(qū)間是[kπ+,kπ+],k∈Z.
(2)∵x∈[-, ],則2x-∈[-, ],
故cos(2x-)∈[-,1],
∴f(x)max=,此時2x-=0,即x=;
f(x)min=-1,此時2x-=,即x=
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)某高傳染性病毒流行期間,為了建立指標來顯示疫情已受控制,以便向該地區(qū)居民顯示可以過正常生活,有公共衛(wèi)生專家建議的指標是“連續(xù)7天每天新增感染人數(shù)不超過5”,根據(jù)連續(xù)7天的新增病例數(shù)計算,下列各選項中,一定符合上述指標的是( )
①平均數(shù)x≤3;②標準差s≤2;③平均數(shù)x≤3且標準差s≤2;④平均數(shù)x≤3且極差小于或等于2;⑤眾數(shù)等于1且極差小于或等于4.
A. ①② B. ③④ C. ③④⑤ D. ④⑤
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校100名學(xué)生的數(shù)學(xué)測試成績的頻率分布直方圖如圖所示,分數(shù)不低于a即為優(yōu)秀,如果優(yōu)秀的人數(shù)為20,則a的估計值是( )
A. 130 B. 140 C. 133 D. 137
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù),如果滿足對任意,存在常數(shù),都有成立,則稱
是上的有界函數(shù),其中稱為函數(shù)的上界,已知函數(shù).
(1)當時,求函數(shù)在上的值域,判斷函數(shù)在上是否為有界函數(shù),并說明理由.
(2)若函數(shù)在上是以為上界的有界函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=a(x﹣5)2+6lnx,其中a∈R,曲線y=f(x)在點(1,f(1))處的切線與y軸相交于點(0,6).
(1)確定a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y=2x2和直線l:y=kx+1,O為坐標原點.
(1)求證:l與C必有兩交點;
(2)設(shè)l與C交于A(x1 , y1)、B(x2 , y2)兩點,且直線OA和OB的斜率之和為1,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在山頂點已測得,,的俯角分別為,,,其中,,為山腳兩側(cè)共線的三點,現(xiàn)欲沿直線開通穿山隧道,為了求出隧道的長,至少還需要直接測量出,,中的哪些線段長?把你上一問指出的需要測量得線段長和已測得的角度作為已知量,寫出計算隧道的步驟.
解:
步驟:還需要直接測量得線段為.
步驟:計算線段.
計算步驟:
步驟:計算線段
計算步驟:
步驟:計算線段
計算步驟:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地最近出臺一項機動車駕照考試規(guī)定:每位考試者一年之內(nèi)最多有4次參加考試的機會,一量某次考試通過,便可領(lǐng)取駕照,不再參加以后的考試,否則就一直考到第4次為止如果李明決定參加駕照考試,設(shè)他每次參加考試通過的概率依次為0.6,0.7,0.8,0.9.求在一年內(nèi)李明參加駕照考試次數(shù)ξ的分布列和ξ的期望,并求李明在一所內(nèi)領(lǐng)到駕照的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一容量為50的樣本,數(shù)據(jù)的分組以及各組的頻數(shù)如下:
[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),5;[30.5,33.5],4.
(1)列出樣本的頻率分布表.
(2)畫出頻率分布直方圖.
(3)根據(jù)頻率分布表,估計數(shù)據(jù)落在[15.5,24.5)內(nèi)的可能性約是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com