【題目】在△ABC中,內(nèi)角A= ,P為△ABC的外心,若 =λ1 +2λ2 ,其中λ1與λ2為實數(shù),則λ1+λ2的最大值為( )
A.
B.1﹣
C.
D.1+
【答案】B
【解析】解:設(shè)|AB|=c,|AC|=b,
則: = c2 , = b2;
又cosA= ,在 =λ1 +2λ2 的兩邊分別乘以 , 得: ;
整理得, ,
解得, ;
∴λ1+λ2=1﹣( + )≤1﹣2 =1﹣ ;
∴λ1+λ2的最大值為 1﹣ .
故選:B
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解基本不等式的相關(guān)知識,掌握基本不等式:,(當(dāng)且僅當(dāng)時取到等號);變形公式:,以及對平面向量的基本定理及其意義的理解,了解如果、是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任意向量,有且只有一對實數(shù)、,使.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C的一個焦點(diǎn)與拋物線C1:y2=-16x的焦點(diǎn)重合,且其離心率為2.
(1)求雙曲線C的方程;
(2)求雙曲線C的漸近線與拋物線C1的準(zhǔn)線所圍成三角形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,不能證明AP⊥BC的條件是( )
A.AP⊥PB,AP⊥PC
B.AP⊥PB,BC⊥PB
C.平面BPC⊥平面APC,BC⊥P C
D.AP⊥平面PBC
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱ABC-A1B1C1中,且,E是棱CC1中點(diǎn),F是AB的中點(diǎn).
(1)求證:CF//平面AEB1;
(2)求點(diǎn)B到平面AEB1的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐P-ABCD的底面ABCD是直角梯形,AB∥CD,AD⊥AB,AD=AB=CD=1,PD⊥平面ABCD,PD=,E是PC的中點(diǎn).
(1)證明:BE∥平面PAD;
(2)求二面角E-BD-C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某風(fēng)景區(qū)水面游覽中心計劃國慶節(jié)當(dāng)日投入之多3艘游船供游客觀光,過去10年的數(shù)據(jù)資料顯示每年國慶節(jié)當(dāng)日客流量X(單位:萬人)都大于1,并把客流量分成三段整理得下表:
國慶節(jié)當(dāng)日客流量X | 1<X<3 | 3≤X≤5 | X>5 |
頻數(shù) | 2 | 4 | 4 |
以這10年的數(shù)據(jù)資料記錄的隔斷客流量的頻率作為每年客流量在隔斷發(fā)生的概率,且每年國慶節(jié)當(dāng)日客流量相互獨(dú)立.
(1)求未來連續(xù)3年國慶節(jié)當(dāng)日中,恰好有1年國慶節(jié)當(dāng)日客流量超過5萬人的概率;
(2)該水面游覽中心希望投入的游船盡可能使用,但每年國慶節(jié)當(dāng)日游船最多使用量:(單位:艘)受當(dāng)日客流量X(單位:萬人)的限制,其關(guān)聯(lián)關(guān)系如下表:
國慶節(jié)當(dāng)日客流量X | 1<X<3 | 3≤X≤5 | X>5 |
游船最多使用量 | 1 | 2 | 3 |
若某艘游船國慶節(jié)當(dāng)日使用,則水面游覽中心國慶節(jié)當(dāng)日可獲得利潤3萬元,若某艘游船國慶節(jié)當(dāng)日不使用,則水面游覽中心國慶節(jié)當(dāng)日虧損0.5萬元,記Y(單位:萬元)表示該水面游覽中心國慶節(jié)當(dāng)日獲得總利潤,當(dāng)Y的數(shù)學(xué)期望最大時稱水面游覽中心在國慶節(jié)當(dāng)日效益最佳,問該水面游覽中心的國慶節(jié)當(dāng)日應(yīng)投入多少艘游船才能使該水面游覽中心在國慶節(jié)當(dāng)日效益最佳?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)θ∈R,則“|θ﹣ |< ”是“sinθ< ”的( 。
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個生產(chǎn)公司投資A生產(chǎn)線500萬元,每萬元可創(chuàng)造利潤萬元,該公司通過引進(jìn)先進(jìn)技術(shù),在生產(chǎn)線A投資減少了x萬元,且每萬元的利潤提高了;若將少用的x萬元全部投入B生產(chǎn)線,每萬元創(chuàng)造的利潤為萬元,其中.
若技術(shù)改進(jìn)后A生產(chǎn)線的利潤不低于原來A生產(chǎn)線的利潤,求x的取值范圍;
若生產(chǎn)線B的利潤始終不高于技術(shù)改進(jìn)后生產(chǎn)線A的利潤,求a的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知隨機(jī)變量ξi滿足P(ξi=1)=pi , P(ξi=0)=1﹣pi , i=1,2.若0<p1<p2< ,則( )
A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)
B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)
C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)
D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com