將參數(shù)方程
x=2+sin2θ
y=sin2θ
(θ為參數(shù))
化為普通方程為( 。
A.y=x-2B.y=x+2C.y=x-2(2≤x≤3)D.y=x+2(0≤y≤1)
將參數(shù)方程
x=2+sin2θ
y=sin2θ
(θ為參數(shù))
 消去參數(shù)化普通方程為 y=x-2,
由 0≤sin2θ≤1,可得2≤x≤3.
故選C.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

本題有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計分
(1)二階矩陣M對應的變換將向量
1
-1
,
-2
1
分別變換成向量
3
-2
-2
1
,直線l在M的變換下所得到的直線l′的方程是2x-y-1=0,求直線l的方程.
(2)過點P(-3,0)且傾斜角為30°的直線l和曲線C:
x=s+
1
s
y=s-
1
s
(s為參數(shù))相交于A,B兩點,求線段AB的長.
(3)若不等式|a-1|≥x+2y+2z,對滿足x2+y2+z2=1的一切實數(shù)x,y,z恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年福建省龍巖市高三第二次質(zhì)檢數(shù)學試題(理) 題型:解答題

本題(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中。K^S*5U.C#O
(1)(本小題滿分7分)選修4-2:矩陣與變換
已知向量=,變換T的矩陣為A=,平面上的點P(1,1)在變換T
作用下得到點P′(3,3),求A4.
(2)(本小題滿分7分)選修4-4:坐標系與參數(shù)方程
直線與圓>0)相交于A、B兩點,設
P(-1,0),且|PA|:|PB|=1:2,求實數(shù)的值
(3)(本小題滿分7分)選修4-5:不等式選講K^S*5U.C#O
對于xR,不等式|x-1|+|x-2|≥2+2恒成立,試求2+的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源:2011屆福建廈門雙十中學高三考前熱身理數(shù)試卷 題型:解答題

本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)(本小題滿分7分)選修4-2:矩陣與變換
已知矩陣,向量
(I)求矩陣的特征值、和特征向量;
(II)求的值.
(2)(本小題滿分7分)選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,已知曲線C的參數(shù)方程為.以直角坐標系原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為
(Ⅰ)求直線l的直角坐標方程;
(Ⅱ)點P為曲線C上的動點,求點P到直線l距離的最大值.
(3)(本小題滿分7分)選修4-5:不等式選講
(Ⅰ)已知:a、b、;w.w.w.k.s.5.u.c.o.m   
(Ⅱ)某長方體從一個頂點出發(fā)的三條棱長之和等于3,求其對角線長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

本題有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計分
(1)二階矩陣M對應的變換將向量
1
-1
-2
1
分別變換成向量
3
-2
,
-2
1
,直線l在M的變換下所得到的直線l′的方程是2x-y-1=0,求直線l的方程.
(2)過點P(-3,0)且傾斜角為30°的直線l和曲線C:
x=s+
1
s
y=s-
1
s
(s為參數(shù))相交于A,B兩點,求線段AB的長.
(3)若不等式|a-1|≥x+2y+2z,對滿足x2+y2+z2=1的一切實數(shù)x,y,z恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年福建省漳州一中高三質(zhì)量檢查數(shù)學試卷(理科)(解析版) 題型:解答題

本題有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計分
(1)二階矩陣M對應的變換將向量,分別變換成向量,直線l在M的變換下所得到的直線l′的方程是2x-y-1=0,求直線l的方程.
(2)過點P(-3,0)且傾斜角為30°的直線l和曲線C:(s為參數(shù))相交于A,B兩點,求線段AB的長.
(3)若不等式|a-1|≥x+2y+2z,對滿足x2+y2+z2=1的一切實數(shù)x,y,z恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案