如圖,在棱長為4的正方體ABCD—A1B1C1D1中,E、F分別是AD,A1D1的中點,長為2的線段MN的一個端點M在線段EF上運動,另一個端點N在底面A1B1C1D1上運動,則線段MN的中點P在二面角A—A1 D1—B1內(nèi)運動所形成的軌跡(曲面)的面積為(   )
A.B.C.D.
B

試題分析:連結(jié).的運動時三角形總是直角三角形.又由于線段的中點P與F點的連線等于線段的一半.所以點P到點F的距離總是等于的一半即1.所以點P的軌跡是一個球面的四分之一故為.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

請您設(shè)計一個帳篷,它下部的形狀是高為1m正六棱柱,上部的形狀是側(cè)棱長為3m的正六棱錐(如圖所示)。試問當帳篷的頂點O到底面中心O1的距離為多少時,帳篷的體積最大?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,正三棱柱ABC-A'B'C'中,D是BC的中點,AA'=AB=2

(1)求證:ADB'D;
(2)求三棱錐A'-AB'D的體積。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖所示,矩形的對角線交于點G,AD⊥平面,,上的點,且BF⊥平面ACE

(1)求證:平面
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知在四棱錐P﹣ABCD中,底面ABCD是邊長為4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E,F(xiàn),G分別是PD,PC,BC的中點.

(1)求證:平面EFG⊥平面PAD;
(2)若M是線段CD上一點,求三棱錐M﹣EFG的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,是以為直徑的半圓上異于點的點,矩形所在的平面垂直于該半圓所在平面,且

(Ⅰ)求證:;
(Ⅱ)設(shè)平面與半圓弧的另一個交點為,
①求證://;
②若,求三棱錐E-ADF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

將某個圓錐沿著母線和底面圓周剪開后展開,所得的平面圖是一個圓和扇形,己知該扇形的半徑為24cm,圓心角為,則圓錐的體積是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,在正三棱錐A-BCD中,E、F分別是AB、BC的中點,EF⊥DE,且BC=1,則正三棱錐A-BCD的體積是(    )

A.                  B.            C.        D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知正四棱柱的體對角線的長為,且體對角線與底面所成角的余弦值為,則該正四棱柱的體積等于             

查看答案和解析>>

同步練習冊答案