15.如圖,四邊形ABCD是矩形,∠EDC=∠CAB,∠DEC=90°.
(1)求證:AC∥DE;
(2)過點B作BF⊥AC于點F,連結(jié)EF,試判別四邊形BCEF的形狀,并說明理由.

分析 (1)利用矩形的性質(zhì)可得AB∥CD,因此∠DCA=∠CAB,可得∠EDC=∠DCA,即可證明AC∥DE.
(2)通過證明△ABF≌△DCE,BF=CE,及其BF∥CE,即可證明.

解答 (1)證明:∵四邊形ABCD是矩形,
∴AB∥CD,∴∠DCA=∠CAB,
∵∠EDC=∠CAB,∴∠EDC=∠DCA,
∴AC∥DE.
(2)解:四邊形BCEF是平行四邊形.以下給出證明:
∵BF⊥AC∴∠BFC=∠AFB=90°.
∵∠DEC=90,AC∥DE,∴∠ACE=180-∠DEC=90°.
∴∠ACE=∠BFC,∴BF∥CE.
∵AB=CD,∠EDC=∠CAB,∠DEC=∠AFB=90°.
∴△ABF≌△DCE (AAS),
∴BF=CE,
∴四邊形BCEF平行四邊形.

點評 本題考查了平行四邊形與矩形的判定與性質(zhì)定理、三角形全等的判定與性質(zhì)定理,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}-a,x≤1}\\{{x}^{2}-3ax+4a,x>1}\end{array}\right.$有三個不同零點,則a的范圍是( 。
A.$({\frac{16}{9},2})$B.$({\frac{16}{9},+∞})∪({-∞,0})$C.$({\frac{16}{9},2}]$D.$({\frac{2}{3},2}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.集合A={y|y=2x},B=|x|y=lg(2x-1)},則A∩B=( 。
A.{y|y≥0}B.{x|x$>\frac{1}{2}$}C.{x|0$<x<\frac{1}{2}$}D.{y|y>0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知正三棱臺(上、下底面是正三角形,上底面的中心在下底面的投影是下底面的中心)的上下底面邊長分別是2cm和4cm,側(cè)棱長是$\sqrt{6}$cm,試求該三棱臺的側(cè)面積與體積(V棱臺=$\frac{1}{3}$(S+$\sqrt{SS′}$+S′)h).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.偶函數(shù)y=f(x)在區(qū)間(-∞,-1]上是增函數(shù),則下列不等式成立的是( 。
A.f(-1)>f($\frac{\sqrt{3}}{3}$)B.f($\sqrt{2}$)>f(-$\sqrt{2}$)C.f(4)>f(3)D.f(-$\sqrt{2}$)>f($\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.函數(shù)y=$\frac{1}{\sqrt{4-3x-{x}^{2}}}$+(x+1)0的定義域為( 。
A.[-4,1]B.(-4,1)C.[-4,-1)D.(-4,-1)∪(-1,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.如圖中程序的運行結(jié)果是( 。
A.1B.3C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知cot(α+$\frac{π}{3}}$)=-3,則tan(2α-$\frac{π}{3}}$)=( 。
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{4}{3}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.下列四組函數(shù)中表示同一個函數(shù)的是( 。
A.f(x)=x0與 g(x)=1B.f(x)=|x|與$g(x)=\sqrt{x^2}$
C.f(x)=x與 $g(x)=\frac{x^2}{x}$D.$f(x)=\root{3}{x^3}$與 $g(x)={(\sqrt{x})^2}$

查看答案和解析>>

同步練習冊答案