【題目】已知函數(shù)f(x)=,
①若f(a)=14,求a的值
②在平面直角坐標系中,作出函數(shù)y=f(x)的草圖.(需標注函數(shù)圖象與坐標軸交點處所表示的實數(shù))
【答案】①②詳見解析
【解析】
試題分析:①分當a≥0時和當a<0時2種情況,分別根據(jù)f(a)=14,求得a的值;②分當x≥0時和當x<0時2種情況,分別作出函數(shù)f(x)的圖象
試題解析:①∵函數(shù)f(x)=,f(a)=14,
當a≥0時,由f(a)=2a﹣2=14,求得a=4;
當a<0時,由f(a)=1﹣2a=14,求得a=﹣.
綜上可得,a=4或a=﹣.
②當x≥0時,把函數(shù)y=2x的圖象向下平移2個單位,
可得f(x)的圖象;
當x<0時,作出函數(shù)y=1﹣2x的圖象即可得到f(x)的圖象.
在平面直角坐標系中,作出函數(shù)y=f(x)的草圖,如圖所示:
科目:高中數(shù)學 來源: 題型:
【題目】省工商局于2003年3月份,對全省流通領域的飲料進行了質量監(jiān)督抽查,結果顯示,某種剛進入市場的x飲料的合格率為80%,現(xiàn)有甲、乙、丙3人聚會,選用6瓶x飲料,并限定每人喝2瓶.則甲喝2瓶合格的x飲料的概率是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在單調遞增數(shù)列中, ,且成等差數(shù)列, 成等比數(shù)列,.
(1)①求證:數(shù)列為等差數(shù)列;
②求數(shù)列通項公式;
(2)設數(shù)列的前項和為,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)接到生產(chǎn)3000臺某產(chǎn)品的三種部件的訂單,每臺產(chǎn)品需要這三種部件的數(shù)量分別為2,2,1(單位:件).已知每個工人每天可生產(chǎn)部件6件,或部件3件,或部件2件.該企業(yè)計劃安排200名工人分成三組分別生產(chǎn)這三種部件,生產(chǎn)部件的人數(shù)與生產(chǎn)部件的人數(shù)成正比,比例系數(shù)為(為正整數(shù)).
(1)設生產(chǎn)部件的人數(shù)為,分別寫出完成三件部件生產(chǎn)需要的時間;
(2)假設這三種部件的生產(chǎn)同時開工,試確定正整數(shù)的值,使完成訂單任務的時間最短,并給出時間最短時具體的人數(shù)分組方案.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對一批電子元件進行壽命追蹤調查,從這批產(chǎn)品中抽取個產(chǎn)品(其中),得到頻率分布直方圖如下:
(Ⅰ)求的值;
(Ⅱ)從頻率分布直方圖估算這批電子元件壽命的平均數(shù)、中位數(shù)的估計分別是多少?
(Ⅲ)現(xiàn)要從300400及400500這兩組中按照分層抽樣的方法抽取一個樣本容量為36的樣本,則在300400及400500這兩組分別抽多少件產(chǎn)品.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線(為參數(shù)),以平面直角坐標系的原點為極點,軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線.
(1)將曲線上的所有點的橫坐標、縱坐標分別伸長為原來的,2倍后得到曲線,試寫出直線的直角坐標方程和曲線的參數(shù)方程;
(2)在曲線上求一點,使點到直線的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓的方程為.
(I)若點在圓的外部,求的取值范圍;
(II)當時,是否存在斜率為的直線,使以被圓截得的弦為直徑所作的圓過原點?若存在,求出的方程;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com