精英家教網 > 高中數學 > 題目詳情
(2012•豐臺區(qū)一模)已知函數f(x)=ax2-(a+2)x+lnx.
(Ⅰ)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)當a>0時,函數f(x)在區(qū)間[1,e]上的最小值為-2,求a的取值范圍;
(Ⅲ)若對任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范圍.
分析:(Ⅰ)我們易求出f(1)及f′(1)的值,代入點斜式方程即可得到答案;
(Ⅱ)確定函數的定義域,求導函數,分類討論,確定函數的單調性,利用函數f(x)在區(qū)間[1,e]上的最小值為-2,即可求a的取值范圍;
(Ⅲ)設g(x)=f(x)+2x,則g(x)=ax2-ax+lnx,對任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,等價于g(x)在(0,+∞)上單調遞增,由此可求a的取值范圍.
解答:解:(Ⅰ)當a=1時,f(x)=x2-3x+lnx,f′(x)=2x-3+
1
x
.         …(1分)
因為f'(1)=0,f(1)=-2,…(2分)
所以切線方程為 y=-2.                                     …(3分)
(Ⅱ)函數f(x)=ax2-(a+2)x+lnx的定義域為(0,+∞).
當a>0時,f′(x)=2ax-(a+2)+
1
x
=
2ax2-(a+2)x+1
x
(x>0),…(4分)
令f'(x)=0,即f′(x)=
2ax2-(a+2)x+1
x
=
(2x-1)(ax-1)
x
=0
,所以x=
1
2
x=
1
a
.          …(5分)
0<
1
a
≤1
,即a≥1時,f(x)在[1,e]上單調遞增,
所以f(x)在[1,e]上的最小值是f(1)=-2;                      …(6分)
1<
1
a
<e
時,f(x)在[1,e]上的最小值是f(
1
a
)<f(1)=-2
,不合題意;
1
a
≥e
時,f(x)在(1,e)上單調遞減,
所以f(x)在[1,e]上的最小值是f(e)<f(1)=-2,不合題意.      …(7分)
綜上可得 a≥1.                                            …(8分)
(Ⅲ)設g(x)=f(x)+2x,則g(x)=ax2-ax+lnx,對任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,等價于g(x)在(0,+∞)上單調遞增.…(9分)
g′(x)=2ax-a+
1
x
=
2ax2-ax+1
x
,…(10分)
當a=0時,g′(x)=
1
x
>0
,此時g(x)在(0,+∞)單調遞增;      …(11分)
當a≠0時,只需g'(x)≥0在(0,+∞)恒成立,因為x∈(0,+∞),只要2ax2-ax+1≥0,則需要a>0,
對于函數y=2ax2-ax+1,過定點(0,1),對稱軸x=
1
4
>0
,只需△=a2-8a≤0,即0<a≤8.    …(12分)
綜上可得 0≤a≤8.                                        …(13分)
點評:本題考查導數知識的運用,考查函數的單調性與最值,考查導數的幾何意義,考查恒成立問題,正確求導是關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•豐臺區(qū)一模)某班共有學生40人,將一次數學考試成績(單位:分)繪制成頻率分布直方圖,如圖所示.
(Ⅰ)請根據圖中所給數據,求出a的值;
(Ⅱ)從成績在[50,70)內的學生中隨機選3名學生,求這3名學生的成績都在[60,70)內的概率;
(Ⅲ)為了了解學生本次考試的失分情況,從成績在[50,70)內的學生中隨機選取3人的成績進行分析,用X表示所選學生成績在[60,70)內的人數,求X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•豐臺區(qū)一模)已知向量
a
=(sinθ,cosθ)
,
b
=(3,4)
,若
a
b
,則tan2θ等于(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•豐臺區(qū)一模)設a=0.64.2,b=70.6,c=log0.67,則a,b,c的大小關系是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•豐臺區(qū)一模)已知定義在R上的函數y=f(x)滿足f(x+2)=f(x),當-1<x≤1時,f(x)=x3.若函數g(x)=f(x)-loga|x|至少有6個零點,則a的取值范圍是( 。

查看答案和解析>>

同步練習冊答案