(本題滿分12分)如圖,在平面直坐標(biāo)系中,已知橢圓,經(jīng)過點(diǎn),其中e為橢圓的離心率.且橢圓與直線 有且只有一個(gè)交點(diǎn)。

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)不經(jīng)過原點(diǎn)的直線與橢圓相交與AB兩點(diǎn),第一象限內(nèi)的點(diǎn)在橢圓上,直線平分線段,求:當(dāng)的面積取得最大值時(shí)直線的方程。

(Ⅰ);(Ⅱ)。

解析試題分析:(Ⅰ)∵橢圓經(jīng)過點(diǎn),∴
,∴  
∴橢圓的方程為…………………………………………2分
又∵橢圓與直線 有且只有一個(gè)交點(diǎn)
∴方程有相等實(shí)根
    ∴ 
∴橢圓的方程為………………………………………………5分
(Ⅱ)由(Ⅰ)知橢圓的方程為 故
設(shè)不經(jīng)過原點(diǎn)的直線的方程交橢圓
    ……………………………6分
  ………………7分       

直線方程為平分線段 
=解得 ……………………………………………8分

又∵點(diǎn)到直線的距離 
…………………………………………9分
設(shè)    
由直線與橢圓相交于A,B兩點(diǎn)可得
求導(dǎo)可得,此時(shí)取得最大值
此時(shí)直線的方程……………………………………………12分
考點(diǎn):本題主要考查橢圓標(biāo)準(zhǔn)方程,橢圓的幾何性質(zhì),直線與橢圓的位置關(guān)系,直線方程,點(diǎn)到直線的距離。
點(diǎn)評(píng):求橢圓的標(biāo)準(zhǔn)方程是解析幾何的基本問題,涉及直線與橢圓的位置關(guān)系問題,常常運(yùn)用韋達(dá)定理,本題屬于中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知?jiǎng)訄AP(圓心為點(diǎn)P)過定點(diǎn)A(1,0),且與直線相切。記動(dòng)點(diǎn)P的軌跡為C。
(Ⅰ)求軌跡C的方程;
(Ⅱ)設(shè)過點(diǎn)P的直線l與曲線C相切,且與直線相交于點(diǎn)Q。試研究:在x軸上是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的頂點(diǎn)與雙曲線的焦點(diǎn)重合,它們的離心率之和為,若橢圓的焦點(diǎn)在軸上,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

.已知雙曲線的中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,一條漸近線方程為,右焦點(diǎn),雙曲線的實(shí)軸為,為雙曲線上一點(diǎn)(不同于),直線,分別與直線交于兩點(diǎn)
(1)求雙曲線的方程;
(2)是否為定值,若為定值,求出該值;若不為定值,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某海域有、兩個(gè)島嶼,島在島正東4海里處。經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線是曲線,曾有漁船在距島、島距離和為8海里處發(fā)現(xiàn)過魚群。以所在直線為軸,的垂直平分線為軸建立平面直角坐標(biāo)系。

(1)求曲線的標(biāo)準(zhǔn)方程;(6分)
(2)某日,研究人員在、兩島同時(shí)用聲納探測儀發(fā)出不同頻率的探測信號(hào)(傳播速度相同),、兩島收到魚群在處反射信號(hào)的時(shí)間比為,問你能否確定處的位置(即點(diǎn)的坐標(biāo))?(8分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知橢圓經(jīng)過點(diǎn),且其右焦點(diǎn)與拋物線的焦點(diǎn)F重合.
(Ⅰ)求橢圓的方程;
(II)直線經(jīng)過點(diǎn)與橢圓相交于A、B兩點(diǎn),與拋物線相交于C、D兩點(diǎn).求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知橢圓的中心是坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率為,又橢圓上任一點(diǎn)到兩焦點(diǎn)的距離和為,過點(diǎn)M(0,)與x軸不垂直的直線交橢圓于P、Q兩點(diǎn).
(1)求橢圓的方程;
(2)在y軸上是否存在定點(diǎn)N,使以PQ為直徑的圓恒過這個(gè)點(diǎn)?若存在,求出N的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
已知橢圓過點(diǎn),且離心率為.
(1)求橢圓的方程;
(2)為橢圓的左右頂點(diǎn),點(diǎn)是橢圓上異于的動(dòng)點(diǎn),直線分別交直線兩點(diǎn).  
證明:以線段為直徑的圓恒過軸上的定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)雙曲線與橢圓有相同焦點(diǎn),且經(jīng)過點(diǎn)(,4),求其方程.

查看答案和解析>>

同步練習(xí)冊答案