【題目】比較甲、乙兩名學(xué)生的數(shù)學(xué)學(xué)科素養(yǎng)的各項(xiàng)能力指標(biāo)值(滿分為5分,分值高者為優(yōu)),繪制了如圖1所示的六維能力雷達(dá)圖,例如圖中甲的數(shù)學(xué)抽象指標(biāo)值為4,乙的數(shù)學(xué)抽象指標(biāo)值為5,則下面敘述正確的是( )

A. 乙的邏輯推理能力優(yōu)于甲的邏輯推理能力

B. 甲的數(shù)學(xué)建模能力指標(biāo)值優(yōu)于乙的直觀想象能力指標(biāo)值

C. 乙的六維能力指標(biāo)值整體水平優(yōu)于甲的六維能力指標(biāo)值整體水平

D. 甲的數(shù)學(xué)運(yùn)算能力指標(biāo)值優(yōu)于甲的直觀想象能力指標(biāo)值

【答案】C

【解析】

利用雷達(dá)圖對每一個(gè)選項(xiàng)的命題逐一分析推理得解.

對于選項(xiàng)A, 甲的邏輯推理能力指標(biāo)值為4,優(yōu)于乙的邏輯推理能力指標(biāo)值為3,所以該命題是假命題;

對于選項(xiàng)B, 甲的數(shù)學(xué)建模能力指標(biāo)值為4,乙的直觀想象能力指標(biāo)值為5,所以乙的直觀想象能力指標(biāo)值優(yōu)于甲的數(shù)學(xué)建模能力指標(biāo)值,所以該命題是假命題;

對于選項(xiàng)C,甲的六維能力指標(biāo)值的平均值為,乙的六維能力指標(biāo)值的平均值為,因?yàn)?/span>,所以選項(xiàng)C正確;

對于選項(xiàng)D, 甲的數(shù)學(xué)運(yùn)算能力指標(biāo)值為4,甲的直觀想象能力指標(biāo)值為5,所以甲的數(shù)學(xué)運(yùn)算能力指標(biāo)值不優(yōu)于甲的直觀想象能力指標(biāo)值,故該命題是假命題.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F為拋物線的焦點(diǎn),F關(guān)于原點(diǎn)的對稱點(diǎn)為,點(diǎn)M在拋物線C上,給出下列三個(gè)結(jié)論:

①使得為等腰三角形的點(diǎn)M有且僅有6個(gè)

②使得的點(diǎn)M有且僅有2個(gè)

③使得的點(diǎn)M有且僅有4個(gè)

其中正確結(jié)論的個(gè)數(shù)為(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為、,橢圓的離心率為,過橢圓的左焦點(diǎn),且斜率為的直線,與以右焦點(diǎn)為圓心,半徑為的圓相切.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)線段是橢圓過右焦點(diǎn)的弦,且,求的面積的最大值以及取最大值時(shí)實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某民航部門統(tǒng)計(jì)的2019年春運(yùn)期間12個(gè)城市售出的往返機(jī)票的平均價(jià)格以及相比上年同期變化幅度的數(shù)據(jù)統(tǒng)計(jì)圖表如圖所示,根據(jù)圖表,下面敘述正確的是( )

A. 同去年相比,深圳的變化幅度最小且廈門的平均價(jià)格有所上升

B. 天津的平均價(jià)格同去年相比漲幅最大且2019年北京的平均價(jià)格最高

C. 2019年平均價(jià)格從高到低居于前三位的城市為北京、深圳、廣州

D. 同去年相比,平均價(jià)格的漲幅從高到低居于前三位的城市為天津、西安、南京

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知aR,函數(shù)f(x)=(-x2ax)ex(xR).

(1)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若函數(shù)f(x)(-1,1)上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,是橢圓短軸的一個(gè)頂點(diǎn),且是面積為的等腰直角三角形.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知直線與橢圓交于不同的,兩點(diǎn),若橢圓上存在點(diǎn),使得四邊形恰好為平行四邊形,求直線與坐標(biāo)軸圍成的三角形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某社區(qū)居民有無收看“奧運(yùn)會開幕式”,某記者分別從某社區(qū)60~70歲,40~50歲,20~30歲的三個(gè)年齡段中的160人,240人,x人中,采用分層抽樣的方法共抽查了30人進(jìn)行調(diào)查,若在60~70歲這個(gè)年齡段中抽查了8人,那么x(  )

A. 90 B. 120 C. 180 D. 200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某蛋糕店每天制作生日蛋糕若干個(gè),每個(gè)生日蛋糕成本為50元,每個(gè)蛋糕的售價(jià)為100元,如果當(dāng)天賣不完,剩余的蛋糕作垃圾處理.現(xiàn)搜集并整理了100天生日蛋糕的日需求量(單位:個(gè)),得到如圖所示的柱狀圖.100天記錄的各需求量的頻率作為每天各需求量發(fā)生的概率.

(1)若蛋糕店一天制作17個(gè)生日蛋糕.

①求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量的函數(shù)解析式;

②求當(dāng)天的利潤不低于600元的概率.

2)若蛋糕店計(jì)劃一天制作16個(gè)或17個(gè)生日蛋糕,請你以蛋糕店一天利潤的平均值作為決策依據(jù),應(yīng)該制作16個(gè)還是17個(gè)生日蛋糕?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在梯形中,,的中點(diǎn),線段交于點(diǎn)(如圖1.沿折起到的位置,使得二面角為直二面角(如圖2.

1)求證:平面;

2)線段上是否存在點(diǎn),使得與平面所成角的正弦值為?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案