已知橢圓的右焦點,過原點和軸不重合的直線與橢圓 相交于,兩點,且最小值為
(Ⅰ)求橢圓的方程;
(Ⅱ)若圓:的切線與橢圓相交于兩點,當,兩點橫坐標不相等時,問:是否垂直?若垂直,請給出證明;若不垂直,請說明理由.

(Ⅰ) 。
(Ⅱ), 

解析試題分析:(Ⅰ)設(shè)AB()F(c,0)
        1分

所以有橢圓E的方程為         5分
(Ⅱ)由題設(shè)條件可知直線的斜率存在,設(shè)直線L的方程為y=kx+m
L與圓相切,∴       7分
L的方程為y=kx+m代入中得:
 令,
①  ② 
③        10分

               12分
考點:本題主要考查橢圓的標準方程,直線與橢圓的位置關(guān)系,平面向量的坐標運算。
點評:難題,求橢圓的標準方程,主要運用了橢圓的幾何性質(zhì),注意明確焦點軸和a,b,c的關(guān)系。曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運用韋達定理。本題(2)注意到直線斜率存在,通過聯(lián)立方程組,應用韋達定理,計算向量的數(shù)量積為0,證得垂直關(guān)系。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的長軸長為,離心率為,分別為其左右焦點.一動圓過點,且與直線相切.
(1)求橢圓及動圓圓心軌跡的方程;
(2) 在曲線上有兩點,橢圓上有兩點,滿足共線,共線,且,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在橢圓上找一點,使這一點到直線的距離為最小,并求最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若橢圓的左、右焦點分別為F1,F(xiàn)2,橢圓的離心率為:2.(1)過點C(-1,0)且以向量為方向向量的直線交橢圓于不同兩點A、B,若,則當△OAB的面積最大時,求橢圓的方程。
(2)設(shè)M,N為橢圓上的兩個動點,,過原點O作直線MN的垂線OD,垂足為D,求點D的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系xOy中,以坐標原點O為極點x軸的正半軸為極軸建立極坐標系, 曲線C1的極坐標方程為:
(1)求曲線C1的普通方程
(2)曲線C2的方程為,設(shè)P、Q分別為曲線C1與曲線C2上的任意一點,求|PQ|的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)雙曲線與橢圓+=1有公共的焦點,且與橢圓相交,它們的交點中一個交點的縱坐標是4,求雙曲線的標準方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的頂點在坐標原點,焦點在軸上,且過點.

(Ⅰ)求拋物線的標準方程;
(Ⅱ)與圓相切的直線交拋物線于不同的兩點若拋物線上一點滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在直接坐標系xOy中,直線L的方程為x-y+4=0,曲線C的參數(shù)方程為.
(1)已知在極坐標(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為(4,),判斷點P與直線L的位置關(guān)系;
(2)設(shè)點Q是曲線C上的一個動點,求它到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知直線l:x=my+1過橢圓的右焦點F,拋物線:的焦點為橢圓C的上頂點,且直線l交橢圓C于A、B兩點,點A、F、B在直線g:x=4上的射影依次為點D、K、E.(1)橢圓C的方程;(2)直線l交y軸于點M,且,當m變化時,探求λ12的值是否為定值?若是,求出λ12的值,否則,說明理由;(3)接AE、BD,試證明當m變化時,直線AE與BD相交于定點

查看答案和解析>>

同步練習冊答案