(12分)定義在R上的增函數(shù)y=f(x)對任意x,y∈R都有f(x+y)=f(x)+f(y).
(Ⅰ)求f(0)
(Ⅱ)求證f(x)為奇函數(shù);
(Ⅲ)若f()+f(3-9-2)<0對任意x∈R恒成立,求實(shí)數(shù)k的取值范圍.解析:(Ⅰ)令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即 f(0)=0.… 2分
(Ⅱ)令y=-x,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,則有
0=f(x)+f(-x).即f(-x)=-f(x)對任意x∈R成立,
所以f(x)是奇函數(shù). ………………………………6分
(Ⅲ) 因?yàn)閒(x)在R上是增函數(shù),又由(Ⅱ)知f(x)是奇函數(shù).
f()<-f(3-9-2)=f(-3+9+2), <-3+9+2,
3-(1+k)+2>0對任意x∈R成立. …… …………………8分
令t=3>0,問題等價于t-(1+k)t+2>0對任意t>0恒成立.
,其對稱軸為
………………10分
解得:
綜上所述,當(dāng)時,
f()+f(3-9-2)<0對任意x∈R恒成立.…12分
法二:由<-3+9+2………………8分
得……………9分
,即u的最小值為,………11分
要使對x∈R不等式恒成立,只要使……12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
A.(3,0) B.(4,0)
C.(3,1) D.(4,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆遼寧省高一第一次月考數(shù)學(xué)試卷 題型:解答題
定義在R上的增函數(shù)y=f(x)對任意x,y∈R都有f(x+y)=f(x)+f(y).
(Ⅰ)求f(0)
(Ⅱ)求證f(x)為奇函數(shù);
(Ⅲ)若f()+f(3-9-2)<0對任意x∈R恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com