【題目】觀察下列等式
l+2+3+…+n= n(n+l);
l+3+6+…+ n(n+1)= n(n+1)(n+2);
1+4+10+… n(n+1)(n+2)= n(n+1)(n+2)(n+3);
可以推測,1+5+15+…+ n(n+1)(n+2)(n+3)=

【答案】n(n+1)(n+2)(n+3)(n+4),(n∈N*
【解析】解:根據(jù)已知中的等式:
l+2+3+…+n= n(n+l);
l+3+6+…+ n(n+1)= n(n+1)(n+2);
1+4+10+… n(n+1)(n+2)= n(n+1)(n+2)(n+3);
歸納可得:第K個(gè)等式右邊系數(shù)的分母是K!,后面依次是從n開始的K個(gè)連續(xù)整數(shù)的積,
故1+5+15+…+ n(n+1)(n+2)(n+3)= n(n+1)(n+2)(n+3)(n+4),(n∈N*
所以答案是: n(n+1)(n+2)(n+3)(n+4),(n∈N*
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解歸納推理的相關(guān)知識,掌握根據(jù)一類事物的部分對象具有某種性質(zhì),退出這類事物的所有對象都具有這種性質(zhì)的推理,叫做歸納推理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在[﹣1,1]的函數(shù)滿足f(﹣x)=﹣f(x),當(dāng)a,b∈[﹣1,0)時(shí),總有 >0(a≠b),若f(m+1)>f(2m),則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的k的值是(

A.10
B.11
C.12
D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的離心率為,以橢圓的四個(gè)頂點(diǎn)為頂點(diǎn)的四邊形的面積為8.

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖,斜率為的直線與橢圓交于, 兩點(diǎn),點(diǎn)在直線的左上方.若,且直線, 分別與軸交于, 點(diǎn),求線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=﹣x2+ax+b的值域?yàn)椋ī仭蓿?],若關(guān)x的不等式 的解集為(m﹣4,m+1),則實(shí)數(shù)c的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=( x的圖象與函數(shù)g(x)的圖象關(guān)于直線y=x對稱,令h(x)=g(1﹣|x|),則關(guān)于h(x)有下列命題:
①h(x)的圖象關(guān)于原點(diǎn)對稱;
②h(x)為偶函數(shù);
③h(x)的最小值為0;
④h(x)在(0,1)上為減函數(shù).
其中正確命題的序號為:②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:f(x)=2 cos2x+sin2x﹣ +1(x∈R).求:
(1)f(x)的最小正周期;
(2)f(x)的單調(diào)增區(qū)間;
(3)若x∈[﹣ ]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某品牌茶壺的原售價(jià)為80元/個(gè),今有甲、乙兩家茶具店銷售這種茶壺,甲店用如下方法促銷:如果只購買一個(gè)茶壺,其價(jià)格為78元/個(gè);如果一次購買兩個(gè)茶壺,其價(jià)格為76元/個(gè);…,一次購買的茶壺?cái)?shù)每增加一個(gè),那么茶壺的價(jià)格減少2元/個(gè),但茶壺的售價(jià)不得低于44元/個(gè);乙店一律按原價(jià)的75%銷售.現(xiàn)某茶社要購買這種茶壺x個(gè),如果全部在甲店購買,則所需金額為y1元;如果全部在乙店購買,則所需金額為y2元.
(1)分別求出y1、y2與x之間的函數(shù)關(guān)系式;
(2)該茶社去哪家茶具店購買茶壺花費(fèi)較少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項(xiàng)均為整數(shù)的數(shù)列{an}滿足an2≤1,1≤a12+a22+…+an2≤m,m,n∈N*
(1)若m=1,n=2,寫出所有滿足條件的數(shù)列{an};
(2)設(shè)滿足條件的{an}的個(gè)數(shù)為f(n,m).
①求f(2,2)和f(2016,2016);
②若f(m+1,m)>2016,試求m的最小值.

查看答案和解析>>

同步練習(xí)冊答案