【題目】如圖(示意),公路AM、AN圍成的是一塊頂角為α的角形耕地,其中tanα=-2.在該塊土地中P處有一小型建筑,經(jīng)測量,它到公路AM,AN的距離分別為3km,km.現(xiàn)要過點(diǎn)P修建一條直線公路BC,將三條公路圍成的區(qū)域ABC建成一個(gè)工業(yè)園.為盡量減少耕地占用,問如何確定B點(diǎn)的位置,使得該工業(yè)園區(qū)的面積最小?并求最小面積.
【答案】當(dāng)AB=5km時(shí),該工業(yè)園區(qū)的面積最小,最小面積為15km2.
【解析】試題分析:先確定點(diǎn)P的位置,再利用BC的斜率表示工業(yè)園區(qū)的面積,利用導(dǎo)數(shù)求其最值.以A為原點(diǎn),AB為x軸,建立平面直角坐標(biāo)系.因?yàn)?/span>tanα=-2,故直線AN的方程是y=-2x.設(shè)點(diǎn)P(x0,y0).因?yàn)辄c(diǎn)P到AM的距離為3,故y0=3.由P到直線AN的距離為,得,解得x0=1或x0=-4(舍去),所以點(diǎn)P(1,3).顯然直線BC的斜率存在.設(shè)直線BC的方程為y-3=k(x-1),k∈(-2,0).令y=0得xB=1-.由解得yC=.設(shè)△ABC的面積為S,則S=xB×yC=.由S==0得k=-或k=3.所以當(dāng)k=-時(shí),即AB=5時(shí),S取極小值,也為最小值15.
試題解析:解:
如圖1,以A為原點(diǎn),AB為x軸,建立平面直角坐標(biāo)系.
因?yàn)?/span>tanα=-2,故直線AN的方程是y=-2x.
設(shè)點(diǎn)P(x0,y0).
因?yàn)辄c(diǎn)P到AM的距離為3,故y0=3.
由P到直線AN的距離為,
得,解得x0=1或x0=-4(舍去),
所以點(diǎn)P(1,3). 4分
顯然直線BC的斜率存在.設(shè)直線BC的方程為y-3=k(x-1),k∈(-2,0).
令y=0得xB=1-. 6分
由解得yC=. 8分
設(shè)△ABC的面積為S,則S=×xB×yC=10分
由S==0得k=-或k=3.
當(dāng)-2<k<-時(shí),S<0,S單調(diào)遞減;當(dāng)-<k<0時(shí),S>0,S單調(diào)遞增. 13分
所以當(dāng)k=-時(shí),即AB=5時(shí),S取極小值,也為最小值15.
答:當(dāng)AB=5km時(shí),該工業(yè)園區(qū)的面積最小,最小面積為15km2. 16分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求下列曲線的標(biāo)準(zhǔn)方程:
(1)與橢圓x2+4y2=16有相同焦點(diǎn),過點(diǎn)p( , ),求此橢圓標(biāo)準(zhǔn)方程;
(2)求以原點(diǎn)為頂點(diǎn),以坐標(biāo)軸為對稱軸,且焦點(diǎn)在直線3x﹣4y﹣12=0的拋物線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形.
(1)求證:BD⊥平面PAC;
(2)若PA=AB,求PB與AC所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:+=1(a>b>0)的離心率為 , 焦距為2 , 過點(diǎn)D(1,0)且不過點(diǎn)E(2,1)的直線l與橢圓C交于A,B兩點(diǎn),直線AE與直線x=3交于點(diǎn)M.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若AB垂直于x軸,求直線MB的斜率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:+=1,左右焦點(diǎn)分別為F1 , F2 , 過F1的直線l交橢圓于A,B兩點(diǎn),若AF2+BF2的最大值為5,則橢圓方程為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax3+|x-a|,aR.
(1)若a=-1,求函數(shù)y=f(x) (x [0,+∞))的圖象在x=1處的切線方程;
(2)若g(x)=x4,試討論方程f(x)=g(x)的實(shí)數(shù)解的個(gè)數(shù);
(3)當(dāng)a>0時(shí),若對于任意的x1 [a,a+2],都存在x2 [a+2,+∞),使得f(x1)f(x2)=1024,求滿足條件的正整數(shù)a的取值的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)F1 , F2分別是橢圓C:的左、右焦點(diǎn).點(diǎn)A是橢圓C上一點(diǎn),點(diǎn)B是直線AF2與橢圓C的另一交點(diǎn),且滿足AF1⊥x軸,∠AF2F1=30°.
(1)求橢圓C的離心率e;
(2)若△ABF1的周長為4 , 求橢圓C的標(biāo)準(zhǔn)方程;
(3)若△ABF1的面積為8 , 求橢圓C的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)平面內(nèi)的向量 , , ,點(diǎn)P在直線OM上,且 .
(1)求 的坐標(biāo);
(2)求∠APB的余弦值;
(3)設(shè)t∈R,求 的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com