(本小題共12分)如圖,四棱錐的底面是直角梯形,,是兩個邊長為的正三角形,的中點,的中點.
(Ⅰ)求證:平面;
(Ⅱ)求證:平面
(Ⅲ)求直線與平面所成角的正弦值.

(Ⅰ)證明:見解析;(Ⅱ)見解析;
(Ⅲ)直線與平面所成角的正弦值為

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知棱長為a的正方體ABCD—A1B1C1D1,E為BC中點.
(1)求B到平面B1ED距離
(2)求直線DC和平面B1ED所成角的正弦值. (12分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱錐中,側(cè)面與側(cè)面均為等邊三角形,中點.
(Ⅰ)證明:平面;
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題分12分)
如圖,在長方體中,
,中點.
(Ⅰ)求證:
(Ⅱ)在棱上是否存在一點,使得平面?若存在,求的長;若不存在,說明理由.
(Ⅲ)若二面角的大小為,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分 )如圖,在三棱柱中,所有的棱長都為2,.
  
(1)求證:;
(2)當(dāng)三棱柱的體積最大時,
求平面與平面所成的銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)四棱錐中,底面為矩形,側(cè)面底面,,

(Ⅰ)證明:;
(Ⅱ)設(shè)與平面所成的角為,
求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)如圖,四棱錐中,底面為矩形,⊥底面,,點是棱的中點.                                                   
(Ⅰ)求點到平面的距離;
(Ⅱ) 若,求二面角的平面角的余弦值 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分) 已知正四棱錐PABCD中,底面是邊長為2 的正方形,高為M為線段PC的中點.
(Ⅰ) 求證:PA∥平面MDB;
(Ⅱ) NAP的中點,求CN與平面MBD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)在平面α內(nèi)有△ABC,在平面α外有點S,斜線SA⊥AC,SB⊥BC,且
斜線SA、SB與平面α所成角相等。
(1)求證:AC=BC
(2)又設(shè)點S到α的距離為4cm,AC⊥BC且AB=6cm,求S與AB的距離。

查看答案和解析>>

同步練習(xí)冊答案