如圖,在四棱錐中,底面邊長為1的菱形,, , ,的中點(diǎn),的中點(diǎn)

(Ⅰ)證明:直線;

(Ⅱ)求異面直線AB與MD所成角的大小;

(Ⅲ)求點(diǎn)B到平面OCD的距離。

本題主要考查直線與直線、直線與平面、平面與平面的位置關(guān)系、異面直線所成角及點(diǎn)到平面的距離等知識(shí),考查空間想象能力和思維能力,利用綜合法或向量法解決立體幾何問題的能力.

方法一(綜合法)

  (1)取OB中點(diǎn)E,連接ME,NE

           

  (2)

       為異面直線所成的角(或其補(bǔ)角)

                  作連接

                 

                 

         ∵,

                所以 所成角的大小為

         (3)點(diǎn)B和點(diǎn)A到平面OCD的距離相等,連接OP,過點(diǎn)A作

 于點(diǎn)Q,

              又 ,線段AQ的長就是點(diǎn)A到平面OCD的距離

                ,

         ∴,所以點(diǎn)B到平面OCD的距離為

方法二(向量法)

于點(diǎn)P,如圖,分別以AB,AP,AO所在直線為軸建立坐標(biāo)系

,

 

 

 

(1)

設(shè)平面OCD的法向量為n=(x,y,z),則n=0,n=0

,解得

(2)設(shè)所成的角為,

   , 所成角的大小為

(3)設(shè)點(diǎn)B到平面OCD的距離為,則在向量上的投影的絕對(duì)值,

       由 , 得.所以點(diǎn)B到平面OCD的距離為


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011年廣西省桂林中學(xué)高二下學(xué)期期中考試數(shù)學(xué) 題型:解答題

((本小題滿分12分)
如圖,在四棱錐中,底面是矩形.已知


(1)證明平面
(2)求異面直線所成的角的大;
(3)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆福建省三明市高三第一學(xué)期測(cè)試?yán)砜茢?shù)學(xué)試卷 題型:解答題

如圖,在四棱錐中,底面是菱形,,,,平面的中點(diǎn),的中點(diǎn).    

(Ⅰ) 求證:∥平面;

(Ⅱ)求證:平面⊥平面;

(Ⅲ)求平面與平面所成的銳二面角的大小.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆上海市高二年級(jí)期終考試數(shù)學(xué) 題型:解答題

(本題滿分16分)

如圖,在四棱錐中,底面是矩形.已知

(1)證明平面;

(2)求異面直線所成的角的大小;

(3)求二面角的大小.

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省高二下學(xué)期期末考試附加卷數(shù)學(xué)卷 題型:解答題

如圖,在四棱錐中,底面是正方形,側(cè)棱中點(diǎn),作

(1)求PF:FB的值

(2)求平面與平面所成的銳二面角的正弦值。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆浙江省高三6月考前沖刺卷數(shù)學(xué)理 題型:解答題

(本小題滿分14分)

如圖,在四棱錐中,底面為平行四邊形,平面,在棱上.

(Ⅰ)當(dāng)時(shí),求證平面

(Ⅱ)當(dāng)二面角的大小為時(shí),求直線與平面所成角的正弦值.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案