【題目】某中學(xué)從甲、乙兩個班中各選出7名學(xué)生參加數(shù)學(xué)競賽,他們?nèi)〉玫某煽儯M分100分)的莖葉圖如圖所示,其中甲班學(xué)生成績的眾數(shù)是83,乙班學(xué)生成績的平均數(shù)是86,則的值為( )

A.7B.8C.9D.10

【答案】B

【解析】

對甲組數(shù)據(jù)進行分析,得出x的值,利用平均數(shù)求出y的值,解答即可.

由莖葉圖可知,莖為8時,甲班學(xué)生成績對應(yīng)數(shù)據(jù)只能是8380+x,85,因為甲班學(xué)生成績眾數(shù)是83,所以83出現(xiàn)的次數(shù)最多,可知x3

由莖葉圖可知乙班學(xué)生的總分為76+81+82+80+y+91+91+96597+y,

又乙班學(xué)生的平均分是86

總分等于86×7602.所以597+y602,解得y5

可得x+y8

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項數(shù)列與正項數(shù)列的前項和分別為,且對任意恒成立.

1)若,求數(shù)列的通項公式;

2)在(1)的條件下,若,求

3)若對任意,恒有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果不是等差數(shù)列,但若,使得,那么稱為“局部等差”數(shù)列.已知數(shù)列的項數(shù)為4,記事件:集合,事件為“局部等差”數(shù)列,則條件概率( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中,角的頂點與坐標原點重合,始邊與軸非負半軸重合,終邊經(jīng)過點,且.

(Ⅰ)若點的坐標為,求的值;

(Ⅱ)若點為線性約束條件所圍成的平面區(qū)域上的一個動點,試確定角的取值范圍,并求函數(shù)的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果函數(shù)在定義域內(nèi)存在區(qū)間,使得該函數(shù)在區(qū)間上的值域為,則稱函數(shù)是該定義域上的和諧函數(shù)”.

1)判斷函數(shù)是不是和諧函數(shù),并說明理由;

2)若函數(shù)和諧函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合.若的非空子集中奇數(shù)的個數(shù)大于偶數(shù)的個數(shù),則稱是“好的”.試求的所有“好的”子集的個數(shù)(答案寫成最簡結(jié)果).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的三頂點坐標分別為,,

1)求的外接圓圓M的方程;

2)已知動點P在直線上,過點P作圓M的兩條切線PE,PF,切點分別為E,F.

①記四邊形PEMF的面積分別為S,求S的最小值;

②證明直線EF恒過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩地相距,汽車從甲地勻速行駛到乙地,速度不超過.已知汽車每小時的運輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度(單位:)的平方成正比,且比例系數(shù)為,固定部分為.

1)把全程運輸成本(元)表示為速度的函數(shù),并求出當,時,汽車應(yīng)以多大速度行駛,才能使得全程運輸成本最;

2)隨著汽車的折舊,運輸成本會發(fā)生一些變化,那么當,元,此時汽車的速度應(yīng)調(diào)整為多大,才會使得運輸成本最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解高三復(fù)習(xí)效果,從高三第一學(xué)期期中考試成績中隨機抽取50名考生的數(shù)學(xué)成績,分成6組制成頻率分布直方圖如圖所示:

(1)求的值;并且計算這50名同學(xué)數(shù)學(xué)成績的樣本平均數(shù);

(2)該學(xué)校為制定下階段的復(fù)習(xí)計劃,從成績在的同學(xué)中選出3位作為代表進行座談,記成績在的同學(xué)人數(shù)位,寫出的分布列,并求出期望.

查看答案和解析>>

同步練習(xí)冊答案