(2012•樂山二模)設(shè)向量
a
b
均為單位向量,且|
a
+2
b
|=
3
,則
a
b
的夾角為( 。
分析:將向量條件兩邊進(jìn)行平方,然后利用數(shù)量積公式求夾角.
解答:解:因?yàn)橄蛄?span id="7z7brpb" class="MathJye">
a
,
b
均為單位向量,所以|
a
|=|
b
|=1
,
又|
a
+2
b
|=
3
,所以平方得|
a
|
2
+4
a
?
b
+4|
b
|
2
=3
,即
a
?
b
=-
1
2

a
?
b
=|
a
||
b
|cos?θ=cos?θ=-
1
2
,所以
a
b
的夾角θ=
3

故選C.
點(diǎn)評:本題考查了利用數(shù)量積求兩個(gè)向量的夾角,要求熟練掌握數(shù)量積的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•樂山二模)已知x、y∈R+,x+y=4-2xy,則x+y的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•樂山二模)一個(gè)頻率分布表(樣本容量為30)不小心被損壞了一部分(如圖),只記得樣本中數(shù)據(jù)在[20,60)上的頻率為0.8,則估計(jì)樣本在[40,50),[50,60)內(nèi)的數(shù)據(jù)個(gè)數(shù)可能是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•樂山二模)若函數(shù)f(x)的導(dǎo)數(shù)為f′(x)=-x(x+1),則函數(shù)g(x)=f(logax)(0<a<1)的單調(diào)減區(qū)間為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•樂山二模)如圖,球O夾在銳二面角α-l-β之間,與兩個(gè)半平面的切點(diǎn)分別為A、B,若AB=
3
,球心O到二面角的棱l的距離為2,則球O的表面積為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•樂山二模)對于非空集合A、B,定義運(yùn)算A⊕B={x|x∈A∪B,且x∉A∩B.已知兩個(gè)開區(qū)間M=(a,b),N=(c,d),其中a、b、c、d滿足a+b<c+d,ab=cd<0,則M⊕N=( 。

查看答案和解析>>

同步練習(xí)冊答案