【題目】已知函數(shù)的最小正周期為,將的圖象向左平移個單位后,所得圖象關(guān)于原點對稱,則函數(shù)的圖象(

A.關(guān)于直線對稱B.關(guān)于直線對稱

C.關(guān)于點(,0)對稱D.關(guān)于點(,0)對稱

【答案】D

【解析】

的圖像向左平移個單位后,所得圖像關(guān)于原點對稱,所以的圖像關(guān)于點(0)對稱;也可根據(jù)條件求出函數(shù)的解析,結(jié)合函數(shù)的對稱性進行求解.

因為將的圖象向左平移個單位后,所得圖象關(guān)于原點對稱,所以的圖象關(guān)于點對稱,故D正確;

fx)的最小正周期為π,

π,得ω2,

fx)=cos2x+φ),

fx)的圖象向左平移個單位后,得到ycos[2x+φ]cos2xφ),所得圖象關(guān)于原點對稱,

φkπkZ,

φkπkZ,

φ,

∴當(dāng)k0時,φ,

fx)=cos2x),驗證其它選項不滿足;

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列結(jié)論

(1)某學(xué)校從編號依次為001,002,…,900的900個學(xué)生中用系統(tǒng)抽樣的方法抽取一個樣本,已知樣本中有兩個相鄰的編號分別為053,098,則樣本中最大的編號為862.

(2)甲組數(shù)據(jù)的方差為5,乙組數(shù)據(jù)為5、6、9、10、5,那么這兩組數(shù)據(jù)中較穩(wěn)定的是甲.

(3)若兩個變量的線性相關(guān)性越強,則相關(guān)系數(shù)的值越接近于1.

(4)對A、B、C三種個體按3:1:2的比例進行分層抽樣調(diào)查,若抽取的A種個體有15個,則樣本容量為30.

則正確的個數(shù)是

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在定義域內(nèi)有兩個不同的極值點.

1)求實數(shù)的取值范圍;

2)設(shè)兩個極值點分別為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線E的參數(shù)方程為為參數(shù)),以O為極點,x軸非負(fù)半軸為極軸建立極坐標(biāo)系,直線,的極坐標(biāo)方程分別為,,交曲線E于點A,B交曲線E于點C,D.

1)求曲線E的普通方程及極坐標(biāo)方程;

2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三(1)班在一次語文測試結(jié)束后,發(fā)現(xiàn)同學(xué)們在背誦內(nèi)容方面失分較為嚴(yán)重.為了提升背誦效果,班主任倡議大家在早、晚讀時間站起來大聲誦讀,為了解同學(xué)們對站起來大聲誦讀的態(tài)度,對全班50名同學(xué)進行調(diào)查,將調(diào)查結(jié)果進行整理后制成下表:

考試分?jǐn)?shù)

頻數(shù)

5

10

15

5

10

5

贊成人數(shù)

4

6

9

3

6

4

1)欲使測試優(yōu)秀率為30%,則優(yōu)秀分?jǐn)?shù)線應(yīng)定為多少分?

2)依據(jù)第1問的結(jié)果及樣本數(shù)據(jù)研究是否贊成站起來大聲誦讀的態(tài)度與考試成績是否優(yōu)秀的關(guān)系,列出2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為贊成與否的態(tài)度與成績是否優(yōu)秀有關(guān)系.

參考公式及數(shù)據(jù):,.

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】50名學(xué)生調(diào)查對AB兩事件的態(tài)度,有如下結(jié)果:贊成A的人數(shù)是全體的五分之三,其余的不贊成,贊成B的比贊成A的多3人,其余的不贊成;另外,對A、B都不贊成的學(xué)生數(shù)比對AB都贊成的學(xué)生數(shù)的三分之一多1. 問對A、B都贊成的學(xué)生有____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)ax2(a2b)xaln x(abR)

()當(dāng)b1,求函數(shù)f(x)的單調(diào)區(qū)間;

()當(dāng)a=-1,b0,證明:f(x)ex>x2x1(其中e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程(為參數(shù)),直線的參數(shù)方程(為參數(shù)).

1)求曲線在直角坐標(biāo)系中的普通方程;

2)以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,當(dāng)曲線截直線所得線段的中點極坐標(biāo)為時,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代有著輝煌的數(shù)學(xué)研究成果,《周牌算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》等10部專著是了解我國古代數(shù)學(xué)的重要文獻.10部專著中有5部產(chǎn)生于魏晉南北朝時期.某中學(xué)擬從這10部專著中選擇2部作為數(shù)學(xué)文化課外閱讀教材則所選2部專著中至少有一部是魏晉南北朝時期的專著的概率為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案