如圖,長方體中,,點(diǎn)E是AB的中點(diǎn).

(1)求三棱錐的體積;
(2)證明: ; 
(3)求二面角的正切值.

(1)1;(2)詳見解析;(3)

解析試題分析:(1)求四面體的體積,當(dāng)高不好確定時(shí)候,可考慮等體積轉(zhuǎn)化,該題中,高,可求體積;(2)證明直線和直線垂直,可先證明直線和平面垂直,由,從而,所以,(3) 求二面角的平面角,可以利用幾何法,先找到二面角的平面角,然后借助平面圖形去計(jì)算,∵,所以,進(jìn)而可證,就是的平面角,二面角也可以利用空間向量法,建立適當(dāng)?shù)目臻g直角坐標(biāo)系,把相關(guān)點(diǎn)的坐標(biāo)表示出來,計(jì)算兩個(gè)半平面的法向量,進(jìn)而求法向量的夾角,然后得二面角的余弦值.
試題解析:(1)解:在三棱錐D1-DCE中,D1D⊥平面DCE,D1D=1
在△DCE中,,
CD=2,CD2=CE2+DE2  ∴CE⊥DE.

∴三棱錐D1-DCE的體積. =                    4分
(2)證明:連結(jié)AD1,由題可知:四邊形ADD1A1是正方形
∴A1D⊥AD1 又∵AE⊥平面ADD1A1,A1D平面ADD1A1
∴AB⊥AD1 又∵AB平面AD1E,AD1平面A D1E  ABAD1=A
∴A1D⊥平面AD1E 又∵D1E平面AD1E
∴A1D⊥D1E                                               8分
(3)根據(jù)題意可得:D1D⊥平面ABCD
又因?yàn)镃E平面ABCD,所以D1D⊥CE。
又由(1)中知,DE⊥CE,D1D平面D1DE,DE平面D1DE,D1DDE=D,
∴CE⊥平面D1DE,又∵D1E平面D1DE ∴CE⊥D1E.
∴∠D1ED即為二面角D1―EC―D的一個(gè)平面角.
在Rt△D1DE中,∠D1DE=90°,D1D="1," DE=
 
∴二面角D1―ED―D的正切值是                         12分
考點(diǎn):1、幾何體的體積;2、直線和直線垂直的判定;3、二面角的求法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

()如圖,四棱錐中,平面,底面是平行四邊形,,的中點(diǎn)

(Ⅰ)求證:
(Ⅱ)試在線段上確定一點(diǎn),使,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,斜三棱柱中,側(cè)面底面ABC,底面ABC是邊長為2的等邊三角形,側(cè)面是菱形,,E、F分別是、AB的中點(diǎn).

求證:(1)
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直四棱柱ABCD–A1B1C1D1中,AB//CD,AD⊥AB,AB=2,AD=,AA1=3,E為CD上一點(diǎn),DE=1,EC=3

(1)證明:BE⊥平面BB1C1C;
(2)求點(diǎn)到平面EA1C1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

用斜二測畫法畫出右圖中五邊形ABCDE的直觀圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在空間幾何體中,平面,平面平面,,

(I)求證:平面;
(II)如果平面,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖,三棱柱中,,。

(Ⅰ)證明:
(Ⅱ)若,,求三棱柱的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個(gè)多面體的直觀圖與三視圖如圖所示,分別是中點(diǎn)

(Ⅰ)求此多面體的體積;
(Ⅱ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分) 已知一個(gè)四棱錐的三視圖如圖所示,其中,且,分別為、、的中點(diǎn)

(1)求證:PB//平面EFG
(2)求直線PA與平面EFG所成角的大小
(3)在直線CD上是否存在一點(diǎn)Q,使二面角的大小為?若存在,求出CQ的長;若不存在,請(qǐng)說明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案