(08年遼寧卷理)在數(shù)列中,,且成等差數(shù)列,成等比數(shù)列.

⑴求,由此猜測的通項公式,并證明你的結(jié)論;

⑵證明:.

說明:本小題主要考查等差數(shù)列,等比數(shù)列,數(shù)學歸納法,不等式等基礎知識,考查綜合運用數(shù)學知識進行歸納、總結(jié)、推理、論證等能力.滿分12分.

解析:

(Ⅰ)由條件得

由此可得

.?????????????????????????????????????? 2分

猜測.????????????????????????????????????? 4分

用數(shù)學歸納法證明:

①當n=1時,由上可得結(jié)論成立.

②假設當n=k時,結(jié)論成立,即

,

那么當n=k+1時,

所以當n=k+1時,結(jié)論也成立.

由①②,可知對一切正整數(shù)都成立.?????????????????????????????? 7分

(Ⅱ)

n≥2時,由(Ⅰ)知.????????????????????????????????? 9分

綜上,原不等式成立. ??????????????????????????????????????????????????????????????????????????? 12分

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(08年遼寧卷理)已知,且在區(qū)間有最小值,無最大值,則__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年遼寧卷理)在中,內(nèi)角對邊的邊長分別是.已知.

⑴若的面積等于,求;

⑵若,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年遼寧卷理)在直角坐標系中,點到兩點的距離之和為4,設點的軌跡為,直線交于兩點.

⑴寫出的方程;

⑵若,求的值;

⑶若點在第一象限,證明:當時,恒有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年遼寧卷理)在數(shù)列中,,且成等差數(shù)列,成等比數(shù)列.

⑴求,由此猜測的通項公式,并證明你的結(jié)論;

⑵證明:.

查看答案和解析>>

同步練習冊答案