【題目】已知圓,是圓M內(nèi)一定點(diǎn),動(dòng)點(diǎn)P為圓M上任意一點(diǎn),線(xiàn)段PN的垂直平分線(xiàn)l和半徑MP相交于點(diǎn)C.

1)求點(diǎn)C的軌跡方程;

2)設(shè)直線(xiàn)C交于不同兩點(diǎn)AB,點(diǎn)O為坐標(biāo)原點(diǎn),當(dāng)的面積S取最大值時(shí),求的值.

【答案】1;(2

【解析】

1)根據(jù)幾何關(guān)系可知,即點(diǎn)C的軌跡是一個(gè)以MN為焦點(diǎn)的橢圓,由此可得橢圓方程;

2)聯(lián)立直線(xiàn)方程和橢圓方程可得,利用韋達(dá)定理和弦長(zhǎng)公式可得,又點(diǎn)O到直線(xiàn)l的距離,由此可得面積,再利用基本不等式即可求出結(jié)果.

1)如圖,由幾何關(guān)系可得,

,所以點(diǎn)C的軌跡是一個(gè)以MN為焦點(diǎn)的橢圓,

由題意知,則,,

故橢圓C的標(biāo)準(zhǔn)方程為;

2)設(shè),由,

由韋達(dá)定理可得,

點(diǎn)O到直線(xiàn)l的距離,

,

當(dāng)且僅當(dāng),即時(shí),S取得最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,且AB1,BC2, ABC=60°PA⊥平面ABCD,AEPCE,

下列四個(gè)結(jié)論:①ABAC;②AB⊥平面PAC;③PC⊥平面ABE;④BEPC.正確的個(gè)數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)C的極坐標(biāo)方程是ρ6sinθ,建立以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸的平面直角坐標(biāo)系.直線(xiàn)l的參數(shù)方程是,(t為參數(shù))

(1)求曲線(xiàn)C的直角坐標(biāo)方程;

(2)若直線(xiàn)l與曲線(xiàn)C相交于A,B兩點(diǎn),且|AB|=,求直線(xiàn)的斜率k

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為發(fā)揮體育核心素養(yǎng)的獨(dú)特育人價(jià)值,越來(lái)越多的中學(xué)將某些體育項(xiàng)目納入到學(xué)生的必修課程.惠州市某中學(xué)計(jì)劃在高一年級(jí)開(kāi)設(shè)游泳課程,為了解學(xué)生對(duì)游泳的興趣,某數(shù)學(xué)研究學(xué)習(xí)小組隨機(jī)從該校高一年級(jí)學(xué)生中抽取了100人進(jìn)行調(diào)查.

1)已知在被抽取的學(xué)生中高一班學(xué)生有6名,其中3名對(duì)游泳感興趣,現(xiàn)在從這6名學(xué)生中隨機(jī)抽取3人,求至少有2人對(duì)游泳感興趣的概率;

2)該研究性學(xué)習(xí)小組在調(diào)查中發(fā)現(xiàn),對(duì)游泳感興趣的學(xué)生中有部分曾在市級(jí)或市級(jí)以上游泳比賽中獲獎(jiǎng),具體獲獎(jiǎng)人數(shù)如下表所示.若從高一班和高一班獲獎(jiǎng)學(xué)生中隨機(jī)各抽取2人進(jìn)行跟蹤調(diào)查,記選中的4人中市級(jí)以上游泳比賽獲獎(jiǎng)的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

班級(jí)

市級(jí)

比賽獲獎(jiǎng)人數(shù)

2

2

3

3

4

4

3

3

4

2

市級(jí)以上

比賽獲獎(jiǎng)人數(shù)

2

2

1

0

2

3

3

2

1

2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),離心率為,為坐標(biāo)原點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)為橢圓上的三點(diǎn),交于點(diǎn),且,當(dāng)的中點(diǎn)恰為點(diǎn)時(shí),判斷的面積是否為常數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為.

1)求的普通方程和的直角坐標(biāo)方程;

2)直線(xiàn)軸的交點(diǎn)為,經(jīng)過(guò)點(diǎn)的直線(xiàn)與曲線(xiàn)交于兩點(diǎn),若,求直線(xiàn)的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(Ⅰ)求函數(shù)的極值;

(Ⅱ)若實(shí)數(shù)為整數(shù),且對(duì)任意的時(shí),都有恒成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列滿(mǎn)足,等比數(shù)列的首項(xiàng)為2,公比為.

1)若,問(wèn)等于數(shù)列中的第幾項(xiàng)?

2)若,數(shù)列的前項(xiàng)和分別記為,的最大值為,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且

)求數(shù)列的通項(xiàng)公式;

)若數(shù)列滿(mǎn)足,求數(shù)列的通項(xiàng)公式;

)在()的條件下,設(shè),問(wèn)是否存在實(shí)數(shù)使得數(shù)列是單調(diào)遞增數(shù)列?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案