【題目】已知函數(shù)f(x)=ex+e﹣x , 其中e是自然對數(shù)的底數(shù).
(1)證明:f(x)是R上的偶函數(shù);
(2)若關于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求實數(shù)m的取值范圍.

【答案】證明:(1)∵f(x)=ex+e﹣x
∴f(﹣x)=e﹣x+ex=f(x),即函數(shù):f(x)是R上的偶函數(shù);
(2)解:若關于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,
即m(ex+e﹣x﹣1)≤e﹣x﹣1,
∵x>0,
∴ex+e﹣x﹣1>0,
即m≤在(0,+∞)上恒成立,
設t=ex , (t>1),則m≤在(1,+∞)上恒成立,
=﹣=﹣≥﹣,當且僅當t=2時等號成立,
∴m≤﹣
【解析】(1)根據(jù)函數(shù)奇偶性的定義即可證明f(x)是R上的偶函數(shù);
(2)利用參數(shù)分離法,將不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,進行轉(zhuǎn)化求最值問題即可求實數(shù)m的取值范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知集合M={x|x2﹣4x+3<0},N={x||x﹣3|≤1}.
(1)求出集合M,N;
(2)試定義一種新集合運算△,使M△N={x|1<x<2};
(3)若有P={x|| |≥ },按(2)的運算,求出(N△M)△P.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐S﹣ABC中,AB⊥BC,AB=BC= , SA=SC=2,二面角S﹣AC﹣B的余弦值是 , 若S、A、B、C都在同一球面上,則該球的表面積是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知指數(shù)函數(shù)y=ax在[0,1]上的最大值與最小值的差為 ,則實數(shù)a的值為( )
A.
B.
C.

D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=a+ 為定義在R上的奇函數(shù).
(1)求a的值;
(2)判斷函數(shù)f(x)在(﹣∞,+∞)的單調(diào)性并給予證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,圓C的參數(shù)方程為(θ是參數(shù)),直線l的極坐標方程為(ρ∈R)
(Ⅰ)求C的普通方程與極坐標方程;
(Ⅱ)設直線l與圓C相交于A,B兩點,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=loga(x+1),函數(shù)g(x)=loga(4﹣2x)(a>0,且a≠1).
(1)求函數(shù)y=f(x)﹣g(x)的定義域;
(2)求使函數(shù)y=f(x)﹣g(x)的值為正數(shù)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知c>0,設命題p:函數(shù)y=cx為減函數(shù);命題q:當x∈[ , 2]時,函數(shù)f(x)=x+ 恒成立,如果p∨q為真命題,p∧q為假命題,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線Cy2=2px(p>0)的焦點為F,若過點F且斜率為1的直線與拋物線相交于M,N兩點,且|MN|=8.

(Ⅰ)求拋物線C的方程;

(Ⅱ)設直線l為拋物線C的切線,且lMN,Pl上一點,求的最小值.

查看答案和解析>>

同步練習冊答案