【題目】已知點(diǎn)M(2,2),N(5,-2),點(diǎn)P在x軸上,分別求滿足下列條件的點(diǎn)P的坐標(biāo).
(1)∠MOP=∠OPN(O是坐標(biāo)原點(diǎn)).
(2)∠MPN是直角.

【答案】
(1)解:因?yàn)椤螹OP=∠OPN,所以O(shè)M∥NP.

所以kOM=kNP.又kOM= =1,

kNP= = (x≠5),

所以1= ,所以x=7,即點(diǎn)P的坐標(biāo)為(7,0)


(2)解:因?yàn)椤螹PN=90°,所以MP⊥NP,

根據(jù)題意知MP,NP的斜率均存在,

所以kMP·kNP=-1.

kMP= (x≠2),kNP= (x≠5),

所以 × =-1,

解得x=1或x=6,即點(diǎn)P的坐標(biāo)為(1,0)或(6,0)


【解析】(1)先根據(jù)內(nèi)錯角相等兩直線平行,判斷OM∥NP,從而兩直線的斜率相等,即可求得點(diǎn)P的坐標(biāo);(2)由∠MPN是直角可以判斷MP⊥NP,從而兩直線的斜率積為-1,即可求得點(diǎn)P的值,特別的需要確定兩直線的斜率是存在的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機(jī)抽取某中學(xué)甲乙兩班各10名同學(xué),測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖.
(1)根據(jù)莖葉圖判斷哪個班的平均身高較高;
(2)計(jì)算甲班的樣本方差;
(3)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A、B、C的對邊分別為a、b、c,且 ,B=C. (Ⅰ)求cosB的值;
(Ⅱ)設(shè)函數(shù)f(x)=sin(2x+B),求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求與直線y x 垂直,并且與兩坐標(biāo)軸圍成的三角形面積為24的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體ABCD﹣A1B1C1D1中,如圖E、F分別是BB1 , CD的中點(diǎn),
(1)求證:D1F⊥AE;
(2)求直線EF與CB1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的一個頂點(diǎn)為A(2,0),離心率為 ,直線y=k(x﹣1)與橢圓C交于不同的兩點(diǎn) M,N.
(1)求橢圓C的方程,并求其焦點(diǎn)坐標(biāo);
(2)當(dāng)△AMN的面積為 時,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1:(a-1)xyb=0,l2axby-4=0,求滿足下列條件的a , b的值.
(1)l1l2 , 且l1過點(diǎn)(1,1);
(2)l1l2 , 且l2在第一象限內(nèi)與兩坐標(biāo)軸圍成的三角形的面積為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次不等式ax2+2x+b>0的解集為{x|x≠c},則 (其中a+c≠0)的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PD⊥底面ABCD,底面ABCD為正方形,PD=DC,E、F分別是AB、PB的中點(diǎn)
(1)求證:EF⊥CD;
(2)在平面PAD內(nèi)求一點(diǎn)G,使GF⊥平面PCB,并證明你的結(jié)論;
(3)求DB與平面DEF所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案