本小題滿分12分)如圖,在三棱柱中,,,分別為,的中點.
(1)求證:∥平面; (2)求證:平面;
(3)直線與平面所成的角的正弦值.

(1)證明:連結,與交于點,連結

因為,分別為的中點, 所以
平面,平面, 所以∥平面.            
(2)證明:在直三棱柱中, 平面,又平面
所以. 因為,中點, 所以
, 所以平面
平面,所以
因為四邊形為正方形,,分別為的中點,
所以,
所以
所以. 又, 所以平面.   
(3)設CE與C1D交于點M,連AM
由(2)知點C在面AC1D上的射影為M,故∠CAM為直線AC與面AC1D所成的角,又A1C1//AC
所以∠CAM亦為直線A1C1與面AC1D所成的角。
易求得

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,是圓的直徑,點在圓上,,于點,平面,

(Ⅰ)證明:;
(Ⅱ)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

正△的邊長為4,邊上的高,分別是邊的中點,現(xiàn)將△沿翻折成直二面角
(1)試判斷直線與平面的位置關系,并說明理由;
(2)求平面BDC與平面DEF的夾角的余弦值;
(3)在線段上是否存在一點,使?證明你的結論.
                         

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知正方體ABCD-A1B1C1D1的棱長為2,點P,Q,R分別是棱AB,CC1,D1A1的中點.
(1)求證:B1D^平面PQR;
(2)設二面角B1-PR-Q的大小為q,求|cosq|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)在四棱錐P—ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD,且PA=2AB
(Ⅰ)求證:平面PAC⊥平面PBD;
(Ⅱ)求二面角B—PC—D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(14分)如圖,圓柱內有一個三棱柱,三棱柱的 底面為圓柱
底面的內接三角形,且是圓的直徑。
(I)證明:平面平面;
(II)設,在圓內隨機選取一點,記該點取自三棱柱內的概率為。
(i)當點在圓周上運動時,求的最大值;
(ii)如果平面與平面所成的角為。當取最大值時,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知長方體,下列向量的數(shù)量積一定不為的是 (   )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

((本小題滿分14分)如圖,四棱錐的底面是正方形,側棱底面,分別是棱的中點.
(1)求證:;  (2) 求直線與平面所成的角的正切值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

如圖所示,在正方體ABCD-A1B1C1D1

中,O是底面正方形ABCD的中心,M是D1D的中點,N是A1B1上的動點,則直線NO、AM的位置關系是(  )

A.平行 B.相交
C.異面垂直 D.異面不垂直

查看答案和解析>>

同步練習冊答案