【題目】四棱柱的底面是菱形,平面,是側棱上的點

1)證明:平面;

2)若的中點,求四棱錐的體積.

【答案】(1)證明見解析(2)

【解析】

1)要證平面,即證垂直于平面內兩條相交直線,題中已知,故只要證垂直于平面內另一條與相交的直線即可,由題意可證出,從而得證本題;

2)要求四棱錐的體積,即求出點到平面的距離和四邊形的面積,點到平面的距離即為菱形的高,四邊形是長方形,利用勾股定理可得出的長,從而可得出體積。

1)證明:連接.

平面,

.

又底面是菱形,

所以.

因為是平面內的相交直線,

所以平面。

平面,

所以

,

所以平面

2)解:連接.

中點時,,.

中,,

,

,

所以,

。

故側面的面積為

到平面的距離就是底面菱形的高,

,

所以四棱錐的體積為。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)若存在極大值,證明:;

2)若關于的不等式在區(qū)間上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某縣畜牧技術員張三和李四年來一直對該縣山羊養(yǎng)殖業(yè)的規(guī)模進行跟蹤調查,張三提供了該縣某山羊養(yǎng)殖場年養(yǎng)殖數(shù)量(單位:萬只)與相應年份(序號)的數(shù)據(jù)表和散點圖(如圖所示),根據(jù)散點圖,發(fā)現(xiàn)yx有較強的線性相關關系.

年份序號

年養(yǎng)殖山羊/萬只

1)根據(jù)表中的數(shù)據(jù)和所給統(tǒng)計量,求關于的線性回歸方程(參考統(tǒng)計量:;

2)李四提供了該縣山羊養(yǎng)殖場的個數(shù)(單位:個)關于的回歸方程.

試估計:①該縣第一年養(yǎng)殖山羊多少萬只?

②到第幾年,該縣山羊養(yǎng)殖的數(shù)量與第一年相比縮小了?

附:回歸直線方程的斜率和截距的最小二乘估計公式分別為:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高鐵是我國國家名片之一,高鐵的修建凝聚著中國人的智慧與汗水.如圖所示,B、EF為山腳兩側共線的三點,在山頂A處測得這三點的俯角分別為、,計劃沿直線BF開通穿山隧道,現(xiàn)已測得BCDE、EF三段線段的長度分別為3、1、2.

(1)求出線段AE的長度;

(2)求出隧道CD的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知直三棱柱的底面是直角三角形,

求證:平面

求二面角的余弦值;

求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動點到點的距離與它到直線的距離的比值為,設動點形成的軌跡為曲線..

1)求曲線的方程;

2)過點的直線與曲線交于兩點,點作,垂足為,過點作,垂足為,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為,為參數(shù)),曲線的參數(shù)方程為為參數(shù)),直線與曲線交于,兩點.

(1)以坐標原點為極點,軸正半軸為極軸建立極坐標系,求曲線的極坐標方程;

(2)若,點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校高三年級有400名學生參加某項體育測試,根據(jù)男女學生人數(shù)比例,使用分層抽樣的方法從中抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:,整理得到如下頻率分布直方圖:

1)若該樣本中男生有55人,試估計該學校高三年級女生總人數(shù);

2)若規(guī)定小于60分為“不及格”,從該學校高三年級學生中隨機抽取一人,估計該學生不及格的概率;

3)若規(guī)定分數(shù)在為“良好”,為“優(yōu)秀”.用頻率估計概率,從該校高三年級隨機抽取三人,記該項測試分數(shù)為“良好”或“優(yōu)秀”的人數(shù)為X,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】共享單車因綠色、環(huán)保、健康的出行方式,在國內得到迅速推廣.最近,某機構在某地區(qū)隨機采訪了10名男士和10名女士,結果男士、女士中分別有7人、6人表示“經(jīng)常騎共享單車出行”,其他人表示“較少或不選擇騎共享單車出行”.

1從這些男士和女士中各抽取一人,求至少有一人“經(jīng)常騎共享單車出行”的概率;

2從這些男士中抽取一人,女士中抽取兩人,記這三人中“經(jīng)常騎共享單車出行”的人數(shù)為,求的分布列與數(shù)學期望.

查看答案和解析>>

同步練習冊答案