若過點P(8,1)的直線與雙曲線x2-4y2=4相交于A、B兩點,且P是線段AB的中點,則直線AB的方程是_________________.

2x-y-15=0


解析:

設(shè)A(x1,y1)、B(x2,y2),則x12-4y12=4,x22-4y22=4,兩式相減得(x1-x2) (x1+x2)=4(y1-y2)(y1+y2),即=2,∴kAB=2.∴AB:2x-y-15=0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(x,y)為橢圓
x2
4
+y2=1
上一點,F(xiàn)1、F2為橢圓左、右焦點,下列結(jié)論中:①△PF1F2面積的最大值為
2
;②若過點P、F2的直線l與橢圓的另一交點為Q,則△PF1Q的周長為8;③若過點P、F2的直線l與橢圓的另一交點為Q,則恒有
|PF2|+|QF2|
|PF2|•|QF2|
=4
;對定點A(
3
2
,
1
2
)
,則|
PA
|+|
PF2
|
的取值范圍為[4-
7
,4+
7
.其中正確結(jié)論的番號是
②③④
②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點分別為F1和F2,下頂點為A,直線AF1與橢圓的另一個交點為B,△ABF2的周長為8,直線AF1被圓O:x2+y2=b2截得的弦長為3.
(I)求橢圓C的方程;
(II)若過點P(1,3)的動直線l與圓O相交于不同的兩點C,D,在線段CD上取一點Q滿足:
CP
=-λ
PD
,
CQ
QD
,λ≠0且λ≠±1
.求證:點Q總在某定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若過點P(8,1)的直線與雙曲線x2-4y2=4相交于A、B兩點,且P是線段AB的中點,則直線AB的方程是_________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點P(x,y)為橢圓
x2
4
+y2=1
上一點,F(xiàn)1、F2為橢圓左、右焦點,下列結(jié)論中:①△PF1F2面積的最大值為
2
;②若過點P、F2的直線l與橢圓的另一交點為Q,則△PF1Q的周長為8;③若過點P、F2的直線l與橢圓的另一交點為Q,則恒有
|PF2|+|QF2|
|PF2|•|QF2|
=4
;對定點A(
3
2
1
2
)
,則|
PA
|+|
PF2
|
的取值范圍為[4-
7
,4+
7
.其中正確結(jié)論的番號是______.

查看答案和解析>>

同步練習(xí)冊答案