【題目】某學(xué)生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時(shí)間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點(diǎn)圖(如下圖).

1.47

20.6

0.78

2.35

0.81

-19.3

16.2

表中

(1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)更適宜作燒水時(shí)間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說明理由)

(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)的回歸方程;

(3)若旋轉(zhuǎn)的弧度數(shù)與單位時(shí)間內(nèi)煤氣輸出量成正比,那么為多少時(shí),燒開一壺水最省煤氣?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為

【答案】(1)更適宜;(2);(3)時(shí),煤氣用量最小.

【解析】

1)根據(jù)散點(diǎn)圖是否按直線型分布作答;(2)根據(jù)回歸系數(shù)公式得出y關(guān)于ω的線性回歸方程,再得出y關(guān)于x的回歸方程;(3)利用基本不等式得出煤氣用量的最小值及其成立的條件.

(1)更適宜作燒水時(shí)間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型.

(2)由公式可得:,

,

所以所求回歸方程為

(3)設(shè),則煤氣用量,

當(dāng)且僅當(dāng)時(shí)取“=”,即時(shí),煤氣用量最小.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】前幾年隨著網(wǎng)購的普及,線下零售遭遇挑戰(zhàn),但隨著新零售模式的不斷出現(xiàn),零售行業(yè)近幾年呈現(xiàn)增長趨勢,下表為年中國百貨零售業(yè)銷售額(單位:億元,數(shù)據(jù)經(jīng)過處理, 分別對應(yīng)):

年份代碼

1

2

3

4

銷售額

95

165

230

310

(1)由上表數(shù)據(jù)可知,可用線性回歸模型擬合的關(guān)系,請用相關(guān)系數(shù)加以說明;

(2)建立關(guān)于的回歸方程,并預(yù)測2018年我國百貨零售業(yè)銷售額;

(3)從年這4年的百貨零售業(yè)銷售額及2018年預(yù)測銷售額這5個(gè)數(shù)據(jù)中任取2個(gè)數(shù)據(jù),求這2個(gè)數(shù)據(jù)之差的絕對值大于200億元的概率.

參考數(shù)據(jù):

,

參考公式:相關(guān)系數(shù),回歸方程中斜率和截距的最小二乘估計(jì)公式分別為, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程.

1求直線的普通方程及曲線的直角坐標(biāo)方程;

2設(shè)曲線軸的兩個(gè)交點(diǎn)分別為,與軸正半軸的交點(diǎn)為,求直線分成的兩部分的面積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求下列函數(shù)的定義域和值域,并寫出其單調(diào)區(qū)間.

1;

2

3;

4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則,將某些整數(shù)染成紅色,先染1;再染3個(gè)偶數(shù)2,4,6;再染6后面最鄰近的5個(gè)連續(xù)奇數(shù)7,9,11,13,15;再染15后面最鄰近的7個(gè)連續(xù)偶數(shù)16,18,20,22,24,26,28;再染此后最鄰近的9個(gè)連續(xù)奇數(shù)29,31,,45;按此規(guī)則一直染下去,得到一紅色子數(shù)列:1,2,4,6,7,9,11,13,15,16,,則在這個(gè)紅色子數(shù)列中,由1開始的第1000個(gè)數(shù)是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),證明:;

(3)試比較 ,并證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小華與另外名同學(xué)進(jìn)行“手心手背”游戲,規(guī)則是:人同時(shí)隨機(jī)選擇手心或手背其中一種手勢,規(guī)定相同手勢人數(shù)更多者每人得分,其余每人得分.現(xiàn)人共進(jìn)行了次游戲,記小華次游戲得分之和為,則為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓()的離心率為,圓軸正半軸交于點(diǎn),圓在點(diǎn)處的切線被橢圓截得的弦長為

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)圓上任意一點(diǎn)處的切線交橢圓于點(diǎn),試判斷是否為定值?若為定值,求出該定值;若不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐中,底面是邊長為2的菱形,的中點(diǎn),平面,與平面所成的角的正弦值為

(1)在棱上求一點(diǎn),使平面;

(2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案