|
a
|=|
b
|=|
c
|=1,
a
+
b
+
c
=0,則
a
c
+
b
c
+
a
b
=
-
3
2
-
3
2
分析:把本題所給的三個向量的和兩邊平方,得到右邊為零,左邊是包含要求的三個向量兩兩求數(shù)量積的式子,把已知向量的模代入,得到要求的結(jié)果.
解答:解:∵
a
+
b
+
c
=
0

(
a
+
b
+
c
)2=0

a
2
+
b
2
+
c
2
+2(
a
c
+
b
c
+
a
b
)=0
|
a
|=|
b
|=|
c
|=1

a
c
+
b
c
+
a
b
=-
3
2

故答案為:-
3
2
點評:本題是一個考查數(shù)量積的應(yīng)用問題,考查學(xué)生的計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:①已知
a
b
,則
a
•(
b
+
c
)+
c•
(
b
-
a
)
=
b
c
;②A,B,M,N為空間四點,若
BA
,
BM
BN
不構(gòu)成空間的一個基底,那么A,B,M,N共面;③已知
a
b
,則
a
,
b
與任何向量都不構(gòu)成空間的一個基底;④若
a
,
b
共線,則
a
,
b
所在直線或者平行或者重合.正確的結(jié)論為
①②④
①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
1
2
,
3
2
)
,向量
b
=(-1,0)
,向量
c
滿足
a
+
b
+
c
=
0

(1)求證:(
a
-
b
)⊥
c
;(2)若
a
-k
b
2
b
+
c
共線,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

填空題
(1)已知
cos2x
sin(x+
π
4
)
=
4
3
,則sin2x的值為
1
9
1
9

(2)已知定義在區(qū)間[0,
2
]
上的函數(shù)y=f(x)的圖象關(guān)于直線x=
4
對稱,當x≥
4
時,f(x)=cosx,如果關(guān)于x的方程f(x)=a有四個不同的解,則實數(shù)a的取值范圍為
(-1,-
2
2
)
(-1,-
2
2
)


(3)設(shè)向量
a
,
b
,
c
滿足
a
+
b
+
c
=
0
,(
a
-
b
)⊥
c
a
b
,若|
a
|=1
,則|
a
|2+|
b
|2+|
c
|2
的值是
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正四棱柱ABCD-A′B′C′D′中,底面邊長為2,側(cè)棱長為3,E為BC的中點,F(xiàn)G分別為CC′、DD′上的點,且CF=2GD=2.求:
(Ⅰ)C′到面EFG的距離;
(Ⅱ)DA與面EFG所成的角的正弦值;
(III)在直線BB'上是否存在點P,使得DP∥面EFG?,若存在,找出點P的位置,若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R),若對所有的實數(shù)x,都有x2-2x+2≤f(x)≤2x2-4x+3成立,則a+b+c=
1
1

查看答案和解析>>

同步練習(xí)冊答案