【題目】△ABC中,角A,B,C所對邊分別為a,b,c,a=2,B=45°,①當(dāng)b= 時,三角形有個解;②若三角形有兩解,則b的取值范圍是 .
【答案】1;(2,2 )
【解析】解:①∵△ABC中,角A,B,C所對邊分別為a,b,c, a=2,B=45°,b= ,
由正弦定理 ,得 ,
解得sinA=1,∴A=90°,三角形只有一個解.
所以答案是:1.
②BC=a=2,要使三角形有兩解,就是要使以C為圓心,半徑為2的圓與BA有兩個交點(diǎn),
當(dāng)A=90°時,圓與AB相切;
當(dāng)A=45°時交于B點(diǎn),也就是只有一解,
∴45°<A<90°,即 <sinA<1,
由正弦定理以及asinB=bsinA.可得:b=x= =2 sinA,
∵2 sinA∈(2,2 ).
∴b的取值范圍是(2,2 ).
所以答案是:(2,2 ).
【考點(diǎn)精析】認(rèn)真審題,首先需要了解正弦定理的定義(正弦定理:).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某校高一年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如下:
分組 | 頻數(shù) | 頻率 |
10 | 0.25 | |
25 | ||
2 | 0.05 | |
合計(jì) | 1 |
(1)求出表中及圖中的值;
(2)試估計(jì)他們參加社區(qū)服務(wù)的平均次數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至少1人參加社區(qū)服務(wù)次數(shù)在區(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,F(xiàn)為弦AC的中點(diǎn),連接OF并延長交 于點(diǎn)D,過點(diǎn)D作⊙O的切線,交BA的延長線于點(diǎn)E.
(1)求證:AC∥DE;
(2)連接CD,若OA=AE=a,寫出求四邊形ACDE面積的思路.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三文科500名學(xué)生參加了5月份的模擬考試,學(xué)校為了了解高三文科學(xué)生的數(shù)學(xué)、語文情況,利用隨機(jī)數(shù)表法從中抽取100名學(xué)生的成績進(jìn)行統(tǒng)計(jì)分析,抽出的100名學(xué)生的數(shù)學(xué)、語文成績?nèi)缦卤恚?/span>
(1)將學(xué)生編號為:001,002,003,……,499,500.若從第5行第5列的數(shù)開始右讀,請你依次寫出最先抽出的5個人的編號(下面是摘自隨機(jī)數(shù)表的第4行至第7行)
(2)若數(shù)學(xué)的優(yōu)秀率為,求的值;
(3)在語文成績?yōu)榱己玫膶W(xué)生中,已知,求數(shù)學(xué)成績“優(yōu)”比“良”的人數(shù)少的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}是等差數(shù)列,前n項(xiàng)和為Sn , {bn}是單調(diào)遞增的等比數(shù)列,b1=2是a1與a2的等差中項(xiàng),a3=5,b3=a4+1,若當(dāng)n≥m時,Sn≤bn恒成立,則m的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對邊分別為a,b,c,已知 . (Ⅰ)若b= ,當(dāng)△ABC周長取最大值時,求△ABC的面積;
(Ⅱ)設(shè) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017屆湖南省長沙市高三上學(xué)期統(tǒng)一模擬考試文數(shù)】已知過的動圓恒與軸相切,設(shè)切點(diǎn)為是該圓的直徑.
(Ⅰ)求點(diǎn)軌跡的方程;
(Ⅱ)當(dāng)不在y軸上時,設(shè)直線與曲線交于另一點(diǎn),該曲線在處的切線與直線交于點(diǎn).求證: 恒為直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中,角,,所對的邊分別是,,,且點(diǎn),,動點(diǎn)滿足(為常數(shù)且),動點(diǎn)的軌跡為曲線.
(Ⅰ)試求曲線的方程;
(Ⅱ)當(dāng)時,過定點(diǎn)的直線與曲線交于,兩點(diǎn),是曲線上不同于,的動點(diǎn),試求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com