17.分別求適合下列條件的雙曲線的標準方程.
(Ⅰ)焦點在y軸上,焦距是16,離心率e=$\frac{4}{3}$;
(Ⅱ)一個焦點為F(-6,0)的等軸雙曲線.

分析 (Ⅰ)由條件可知c=8,又e=$\frac{4}{3}$,所以a=6,求出b,即可求出雙曲線的標準方程;
(Ⅱ)設所求等軸雙曲線:x2-y2=a2,則c2=2a2=36,求出a,即可求出雙曲線的標準方程.

解答 解:(Ⅰ)由條件可知c=8,又e=$\frac{4}{3}$,所以a=6,b=$\sqrt{64-36}$=2$\sqrt{7}$,
故雙曲線的標準方程為$\frac{{y}^{2}}{36}-\frac{{x}^{2}}{28}$=1.…(5分)
(Ⅱ)設所求等軸雙曲線:x2-y2=a2,則c2=2a2=36,
∴a=3$\sqrt{2}$,
故雙曲線的標準方程為$\frac{{x}^{2}}{18}-\frac{{y}^{2}}{18}$=1.…(10分)

點評 本題考查雙曲線的方程與性質(zhì),考查學生的計算能力,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.設A={x|x≤1或x≥3},B={x|a≤x≤a+1},A∩B=∅,則a的取值范圍是(1,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.曲線y=1+$\sqrt{4-{x^2}}$與直線y=k(x-2)+4有兩個不同交點的充要條件是$\frac{5}{12}<k≤\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.給定an=logn+1(n+2),n∈N*,定義使a1•a2•a3•a4…ak為整數(shù)的k(k∈N*)叫做劣數(shù),則區(qū)間(1,62)內(nèi)的所有劣數(shù)的和是( 。
A.50B.51C.52D.55

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線與圓(x-$\sqrt{3}$)2+y2=2相切,則雙曲線的離心率為( 。
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知橢圓C:C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,左頂點A(-2,0).
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設直線l:x=my+t(t≠-a)與橢圓C交于不同兩點B,C,且滿足AB⊥AC.求證:直線l過定點,并求出定點M的坐標;
(Ⅲ)在(Ⅱ)的條件下,過A作AD⊥l,垂足為D,求D的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.某研究性學習小組,為了對白天平均氣溫與某奶茶店的某種飲料銷量之間的關系進行分析研究,他們分別記錄了2月11日至2月16日的白天平均氣溫x(℃)與該奶茶店的這種飲料銷量y(杯),得到如表數(shù)據(jù):
日期2月11日2月12日2月13日2月14日2月15日2月16日
平均氣溫x(℃)1011131286
飲料銷量y(杯)222529261612
該小組的研究方案:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選的2組數(shù)據(jù)進行檢驗.
(Ⅰ)求選取的2組數(shù)據(jù)恰好是相鄰兩天的概率;
(Ⅱ)若選取的是11日和16日的兩組數(shù)據(jù),請根據(jù)12日至15日的數(shù)據(jù),求出y關于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$,并判斷該小組所得線性回歸方程是否理想.(若由線性回歸方程得到的估計數(shù)據(jù)與所選的檢驗數(shù)據(jù)的誤差均不超過2杯,則認為該方程是理想的)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.二項式(ax+$\frac{\sqrt{3}}{6}$)6的展開式的第二項的系數(shù)為-$\sqrt{3}$,則a的值為-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.集合A={(x,y)|y=a},集合B={(x,y)|y=bx+1,b>0,b≠1},若集合A∩B≠∅,則實數(shù)a的取值范圍是( 。
A.(-∞,1)B.(-∞,1]C.[1,+∞)D.(1,+∞)

查看答案和解析>>

同步練習冊答案