【題目】已知函數(shù)f(x)=xlnx,g(x)=
(1)證明方程f(x)=g(x)在區(qū)間(1,2)內(nèi)有且僅有唯一實(shí)根;
(2)記max{a,b}表示a,b兩個(gè)數(shù)中的較大者,方程f(x)=g(x)在區(qū)間(1,2)內(nèi)的實(shí)數(shù)根為x0 , m(x)=max{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)內(nèi)有兩個(gè)不等的實(shí)根x1 , x2(x1<x2),判斷x1+x2與2x0的大小,并說明理由.

【答案】
(1)證明:令F(x)=f(x)﹣g(x),

則F(x)=xlnx﹣ ,定義域是(0,+∞),

F′(x)=1+lnx+ ,

x>1時(shí),F(xiàn)′(x)>0,∴F(x)在(1,2)遞增,

又F(1)=﹣ <0,F(xiàn)(2)=2ln2﹣ >0,

而F(x)在(1,+∞)上連續(xù),

根據(jù)零點(diǎn)存在定理可得:F(x)=0在區(qū)間(1,2)有且只有1個(gè)實(shí)根,

即方程f(x)=g(x)在區(qū)間(1,2)內(nèi)有且僅有唯一實(shí)根


(2)解:x1+x2<2x0,

證明過程如下:

顯然:m(x)= ,

當(dāng)1<x<x0時(shí),m(x)= ,m′(x)= <0,

故m(x)單調(diào)遞減;

當(dāng)x>x0時(shí),m(x)=xlnx,m′(x)=1+lnx>0,m(x)遞增,

要證x1+x2<2x0,

即證x2<2x0﹣x1,

由(1)知x1<x0<x2,g(x1)=f(x2)=n,

故即證f(x2)<f(2x0﹣x1),

即證g(x1)<f(2x0﹣x1),

即證 <(2x0﹣x1)ln(2x0﹣x1),(1<x1<x0<2),(*),

設(shè)H(x)= ﹣(2x0﹣x)ln(2x0﹣x),(1<x<x0<2),

H′(x)= +ln(2x0﹣x)+1,

∵1<x<x0<2,

+1>0,ln(2x0﹣x)>0,

∴H′(x)>0,

∴H(x)在(1,x0)遞增,

即H(x)<H(x0)=0,故(*)成立,

故x1+x2<2x0成立


【解析】(1)求出函數(shù)的導(dǎo)數(shù),通過解關(guān)于導(dǎo)函數(shù)的不等式,得到函數(shù)的單調(diào)性,結(jié)合零點(diǎn)存在定理證出結(jié)論即可;(2)問題轉(zhuǎn)化為證 <(2x0﹣x1)ln(2x0﹣x1),(1<x1<x0<2),(*),設(shè)H(x)= ﹣(2x0﹣x)ln(2x0﹣x),(1<x<x0<2),根據(jù)函數(shù)的單調(diào)性證明即可.
【考點(diǎn)精析】通過靈活運(yùn)用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃購(gòu)買1臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購(gòu)進(jìn)機(jī)器時(shí),可以額外購(gòu)買這種零件作為備件,每個(gè)200元.在機(jī)器使用期間,如果備件不足再購(gòu)買,則每個(gè)500元.現(xiàn)需決策在購(gòu)買機(jī)器時(shí)應(yīng)同時(shí)購(gòu)買幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖.

表示臺(tái)機(jī)器在三年使用期內(nèi)需更換的易損零件數(shù),表示臺(tái)機(jī)器在購(gòu)買易損零件上所需的費(fèi)用(單位:元),表示購(gòu)機(jī)的同時(shí)購(gòu)買的易損零件數(shù).

(1)若,求的函數(shù)解析式;

(2)若要求需更換的易損零件數(shù)不大于的頻率不小于,求的最小值;

(3)假設(shè)這臺(tái)機(jī)器在購(gòu)機(jī)的同時(shí)每臺(tái)都購(gòu)買個(gè)易損零件,或每臺(tái)都購(gòu)買個(gè)易損零件,分別計(jì)算這臺(tái)機(jī)器在購(gòu)買易損零件上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購(gòu)買臺(tái)機(jī)器的同時(shí)應(yīng)購(gòu)買個(gè)還是個(gè)易損零件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)銷商小王對(duì)其所經(jīng)營(yíng)的某一型號(hào)二手汽車的使用年數(shù)(0<≤10)與銷售價(jià)格(單位:萬元/輛)進(jìn)行整理,得到如下的對(duì)應(yīng)數(shù)據(jù):

使用年數(shù)

2

4

6

8

10

售價(jià)

16

13

9.5

7

4.5

(Ⅰ)試求關(guān)于的回歸直線方程;

(附:回歸方程,

(Ⅱ)已知每輛該型號(hào)汽車的收購(gòu)價(jià)格為萬元,根據(jù)(Ⅰ)中所求的回歸方程,

預(yù)測(cè)為何值時(shí),小王銷售一輛該型號(hào)汽車所獲得的利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知fx)是定義在(0,+∞)上的增函數(shù),且滿足fxy)=fx)+fy),f(2)=1.

(1)求f(8)的值;

(2)求不等式fx)-fx-2)>3的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某臺(tái)風(fēng)中心位于海港城市東偏北的150公里外,以每小時(shí)公里的速度向正西方向快速移動(dòng),2.5小時(shí)后到達(dá)距海港城市西偏北的200公里處,若,則風(fēng)速的值為_____公里/小時(shí)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的上、下焦點(diǎn)分別為,上焦點(diǎn)到直線 4x+3y+12=0的距離為3,橢圓C的離心率e=

(I)若P是橢圓C上任意一點(diǎn),求的取值范圍;

(II)設(shè)過橢圓C的上頂點(diǎn)A的直線與橢圓交于點(diǎn)B(B不在y軸上),垂直于的直線與交于點(diǎn)M,與軸交于點(diǎn)H,若,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, .

(1)求函數(shù)的最小值;

(2)對(duì)一切, 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(12)如圖所示,函數(shù)的一段圖象過點(diǎn)

1)求函數(shù)的表達(dá)式;

2)將函數(shù)的圖象向右平移個(gè)單位,得函數(shù)的圖象,求函數(shù)的最大值,并求此時(shí)自變量的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)的圖象在點(diǎn)處的切線的傾斜角為45°,對(duì)于任意的,函數(shù)在區(qū)間上總不是單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案