已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,對(duì)定義域內(nèi)任意x,均有恒成立,求實(shí)數(shù)a的取值范圍?
(Ⅲ)證明:對(duì)任意的正整數(shù)恒成立。

(Ⅰ);(Ⅱ);(Ⅲ)詳見(jiàn)解析.

解析試題分析:(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間,首先確定定義域,可通過(guò)單調(diào)性的定義,或求導(dǎo)確定單調(diào)區(qū)間,由于,含有對(duì)數(shù)函數(shù),可通過(guò)求導(dǎo)來(lái)確定單調(diào)區(qū)間,對(duì)函數(shù)求導(dǎo)得,由此令,解出就能求出函數(shù)的單調(diào)區(qū)間;(Ⅱ)若,對(duì)定義域內(nèi)任意,均有恒成立,求實(shí)數(shù)的取值范圍,而,對(duì)定義域內(nèi)任意,均有恒成立,屬于恒成立問(wèn)題,解這一類題,常常采用含有參數(shù)的放到不等式的一邊,不含參數(shù)(即含)的放到不等式的另一邊,轉(zhuǎn)化為函數(shù)的最值問(wèn)題,但此題用此法比較麻煩,可考慮求其最小值,讓最小值大于等于零即可,因此對(duì)函數(shù)求導(dǎo),利用導(dǎo)數(shù)確定最小值,從而求出的取值范圍;(Ⅲ)由(Ⅱ)知,當(dāng)時(shí),,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,這個(gè)不等式等價(jià)于,即,由此對(duì)任意的正整數(shù),不等式恒成立.
試題解析:(Ⅰ)定義域?yàn)椋?,+∞),,,所以(4分)
(Ⅱ),當(dāng)時(shí),上遞減,在上遞增,,當(dāng)時(shí), 不可能成立,綜上;(9分)
(Ⅲ)令,相加得到
得證。(14分)
考點(diǎn):函數(shù)與導(dǎo)數(shù),函數(shù)的單調(diào)區(qū)間,函數(shù)與不等式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)上為增函數(shù),且,求解下列各題:
(1)求的取值范圍;
(2)若上為單調(diào)增函數(shù),求的取值范圍;
(3)設(shè),若在上至少存在一個(gè),使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(1)當(dāng),時(shí),求函數(shù)的最大值;
(2)令,其圖象上存在一點(diǎn),使此處切線的斜率,求實(shí)數(shù)的取值范圍;
(3)當(dāng),,時(shí),方程有唯一實(shí)數(shù)解,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)若函數(shù)在點(diǎn)處的切線與圓相切,求的值;
(2)當(dāng)時(shí),函數(shù)的圖像恒在坐標(biāo)軸軸的上方,試求出的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(Ⅰ)設(shè)(其中的導(dǎo)函數(shù)),求的最大值;
(Ⅱ)求證:當(dāng)時(shí),有;
(Ⅲ)設(shè),當(dāng)時(shí),不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知中心在原點(diǎn)的雙曲線的一個(gè)焦點(diǎn)是,一條漸近線的方程是.
(1)求雙曲線的方程;(2)若以為斜率的直線與雙曲線相交于兩個(gè)不同的點(diǎn),且線段的垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(1)討論函數(shù)的單調(diào)性;
(2)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若當(dāng)時(shí),求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某商場(chǎng)銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量(單位:千克)與銷售價(jià)格(單位:元/千克)滿足關(guān)系式其中為常數(shù).己知銷售價(jià)格為5元/千克時(shí),每日可售出該商品11千克.
(1)求的值;
(2)若該商品的成本為3元/千克,試確定銷售價(jià)格的值,使商場(chǎng)每日銷售該商品所獲得利潤(rùn)最大.

查看答案和解析>>

同步練習(xí)冊(cè)答案